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Cell subtype-specific effects of genetic 
variation in the Alzheimer’s disease brain
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Devan Phillips2,18, Liat Amir-Zilberstein2, Hyo Lee    5,6, Richard V. Pearse II 5,6, 
Atlas Khan    7, Badri N. Vardarajan    8,9,10, Krzysztof Kiryluk    7, 
Chun Jimmie Ye    11,12,13,14, Hans-Ulrich Klein    1, Gao Wang9, Aviv Regev    2,15,18, 
Naomi Habib    4, Julie A. Schneider    3, Yanling Wang    3, 
Tracy Young-Pearse    5,6, Sara Mostafavi    16,17, David A. Bennett3, 
Vilas Menon    1,20 & Philip L. De Jager    1,20 

The relationship between genetic variation and gene expression in brain 
cell types and subtypes remains understudied. Here, we generated 
single-nucleus RNA sequencing data from the neocortex of 424 individuals 
of advanced age; we assessed the effect of genetic variants on RNA 
expression in cis (cis-expression quantitative trait loci) for seven cell 
types and 64 cell subtypes using 1.5 million transcriptomes. This effort 
identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell 
subtype level. Many eGenes are only detected within cell subtypes. A new 
variant influences APOE expression only in microglia and is associated 
with greater cerebral amyloid angiopathy but not Alzheimer’s disease 
pathology, after adjusting for APOEε4, providing mechanistic insights 
into both pathologies. Furthermore, only a TMEM106B variant affects the 
proportion of cell subtypes. Integration of these results with genome-wide 
association studies highlighted the targeted cell type and probable causal 
gene within Alzheimer’s disease, schizophrenia, educational attainment 
and Parkinson’s disease loci.

Gene discovery studies have created a critical new foundation for the 
study of neurodegenerative and neuropsychiatric diseases, consisting of 
a growing list of validated susceptibility loci and a much larger set of loci 
with suggestive levels of evidence. Reference epigenomic atlases gen-
erated from small numbers of individuals or cell lines have been helpful in 
prioritizing variants within loci and in suggesting the relevant tissue or cell 
type for a given variant1–3. However, these reference data are insufficient: 
‘quantitative trait locus’ (QTL) studies are needed to map the functional 
consequences of variants. Until now, QTL studies were largely limited 
to tissue-level molecular profiles4,5 and the imperfect estimates of cell 
types from bulk deconvolution efforts6,7. However, cytometry enabled 
the measurement of targeted proteins on individual cells8,9, while cell 
sorting approaches enabled the large-scale profiling of rare cell types10,11.

An early, modest-sized effort to map brain expression QTLs 
(eQTLs) collated different small single-nucleus RNA sequencing 
(snRNA-seq) datasets from different brain regions and showed 
that such mapping efforts were likely to be fruitful12. In this study, 
we analyzed snRNA-seq data derived from the dorsolateral pre-
frontal cortex (DLPFC)—a hub for cognitive and mood circuits—of  
424 older participants. The relationship of these data to phenotypes 
of Alzheimer’s disease (AD) is reported elsewhere13. Our effort uncov-
ered eQTLs in the seven major neocortical cell types and 64 of their 
subtypes13, discovering many cis-eQTLs active in only one subtype 
of cell. This importance of nuanced gene expression is critical to 
understand the functional consequences of disease-associated vari-
ation and the transition of insights to induced pluripotent stem cell 
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(ROS) and the Memory Aging Project (MAP)16. All participants were 
without known dementia at baseline (Methods). The demographic and 
diagnostic details of the 424 participants are presented in Supplemen-
tary Table 1. At the time of death, 34% of participants were cognitively 
nonimpaired, 26% were mildly impaired and 40% had dementia. Of 
the 424 participants, 68% were female and 63% fulfilled a pathologi-
cal diagnosis of AD by the National Institutes of Health (NIH) Reagan 
Criteria. After preprocessing, 424 participants with both snRNA-seq 
and whole-genome sequencing (WGS) data were retained for analysis. 
Participants had a median of 3,824 nuclei. We used a stepwise cluster-
ing approach (Methods) to identify first the major cell types of the 
DLPFC and then subtypes in each cell type (Fig. 1b and Supplementary 
Figs. 1 and 2). In the end, we organized our data into eight major cell 
types (seven of which had enough data for QTL mapping), which were 

(iPSC)-derived neurons and astrocytes, which exhibit certain eQTLs. 
We also mapped the effects of genetic variants on and the heritability 
of the frequency of cell subtypes (fraction QTLs, (fQTLs)). Integrating 
our results with those of gene discovery studies, we prioritized (1) cell 
types in which individual susceptibility loci appear to be having their 
effect, (2) putative causal variants in each risk haplotype and (3) the 
target gene of each variant.

Results
Description of the dataset
Figure 1a shows the schema of our study. Leveraging our previous 
work14,15, snRNA-seq data were generated from frozen samples of DLPFC 
obtained from the brains of participants in two longitudinal studies of 
cognitive aging with prospective autopsies: the Religious Order Study 
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Fig. 1 | Study design and summary of cell type-specific and subtype-specific 
cis-eQTL. a, Schema of our study. b, Uniform manifold approximation and 
projection (UMAP) visualization of 1,509,626 nuclei from 424 donors. Each of 
the seven major cell types is labeled with a different color. Ast, astrocyte; End, 
endothelial cell; Exc, excitatory neuron; Inh, inhibitory neuron; Mic, microglia; 
Oli, oligodendrocyte. c, Number of eGenes (genes targeted by a cis-eQTL effect) 
detected within each of the seven cell types. d, Number of eGenes detected in 
each of the 64 cell subtypes that were retained for analysis. e,f, Relationship 
between cell (sub)type proportions and number of eGenes detected. The dashed 
line shows a least-squares fit with zero intercept; β is its slope. The shaded  
area represents the 95% confidence interval (CI). e, Cell type proportions.  

f, Cell subtype proportions; the slope is much steeper than for the cell types, as 
illustrated by the inset, which enlarges the plotting of the data near the origin. 
g, Number of eGenes that are unique to the analysis of cell subtypes: for each 
cell type, we present a bar chart summarizing the extent to which cell type-level 
eGenes were found once the cells assigned to a given cell type were partitioned 
into the subtypes of that cell type; the six most common cell types are shown. For 
each cell type, the set of eGenes identified in all subtypes of a given cell type are 
shown in gray; in each cell type, a subset of these cell subtype eGenes were not 
recovered in the cell type-level analysis, suggesting that they may be specific to a 
cell subtype context.
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further subdivided into 95 cell subtypes found in the human DLPFC  
(64 of which had sufficient data for QTL mapping)13.

Mapping cis-eQTLs at the cell type level
To map cis-eQTLs, we created pseudobulk RNA expression measures 
for each major cell type by collapsing unique molecular identifier (UMI) 
counts from all nuclei assigned to a given cell type in each individual 
(Methods). We repeated the process at the cell subtype level. We used 
the Matrix eQTL v2.3 software17 adjusting for 30 expression principal 
components, as we empirically determined this number as maximizing 
eQTL discovery (Methods). After inclusion of these covariates, clin-
icopathological traits and postmortem interval did not meaningfully 
influence eQTL discovery. Supplementary Fig. 3a shows the number of 
genes tested for eQTLs in each cell type. Supplementary Table 2 sum-
marizes the results of cis-eQTL mapping at the cell type level. In Fig. 1c, 
we summarize the number of eGenes detected, where an ‘eGene’ is a 
gene for which an SNP–gene QTL pair exceeded our threshold of signifi-
cance, a two-step false discovery rate (FDR) lower than 0.05 (Methods). 
Using a similar approach, Fig. 1d and Supplementary Table 3 present 
the number of eGenes detected in the 64 cell subtypes retained for 
eQTL analysis.

The large difference in the number of eQTLs between cell types 
is explained in part by cell type proportions (Fig. 1e). Given that 
neurons, particularly the excitatory type but also true for inhibitory 
neurons, are the most abundant cell types in the neocortex and also 
have, on average, the most RNA, it is not surprising that they drive 
the largest proportion of eGene discovery. Less common cells such 
as microglia (approximately 5.0% of nuclei) return a substantial (899 
eGenes) but smaller number of eGenes when compared to excita-
tory neurons (7,331 eGenes). Because we excluded genes that have 
few UMI counts from the pseudobulk computation, abundant cell 
types had higher UMI counts and thus had more genes tested for 
eQTLs (Supplementary Fig. 3a). Endothelial cells had fewer partici-
pants in its pseudobulk expression (Supplementary Fig. 3b), further 
deteriorating the statistical power for eQTL detection. Moreover, 
higher UMI counts resulted in more accurate estimate and higher 
heritability of gene expression (Supplementary Fig. 3c). The cor-
relation between cell population frequency and eGene discovery 
also held among cell subtypes (Fig. 1f). Unexpectedly, the slope of 
eGenes per cell population proportions was much steeper among 
cell subtypes than in cell types (β = 454 and β = 190 per 1% increase 
in cell subtype or type frequency, respectively, which is significantly 
different; P = 6.9 × 10−9), suggesting that cell subtypes may be a better 
target for eGene discovery in future studies.

To evaluate the extent to which cell subtype analysis enhanced 
cis-eQTL discovery, we compared eGenes between each cell type and its 
subtypes (Fig. 1g). In excitatory neurons, 1,258 unique eGenes were only 
detected in excitatory neuron subtypes but not in the cell type-level 
analysis in which all excitatory neuron subtypes were pooled. There 
was also a nonnegligible gain of eGenes when analyzing subtypes for 
all other cell types, including astrocytes, microglia, oligodendrocytes 
and oligodendroglial progenitor cells (OPCs) (Fig. 1g).

Similarity and specificity of neocortical eGenes
Among the 10,004 eGenes that we detected across all cell types, a  
substantial minority (4,598 eGenes; 46%) was cell type-specific (Fig. 2a). 
Figure 2b illustrates the extent to which eGenes were shared among 
the different cell types. Cell type specificity of eQTLs can be explained 
either by (1) a target gene expressed only in one cell type, or (2) a target 
gene expressed in multiple cell types but with genetic association in 
only one cell type. Interestingly, a large fraction of cell type-specific 
eGenes fitted the latter pattern (blue bars in Fig. 2b). These eGenes 
may have multiple enhancers, one of which is specific for a given cell 
type. A similar trend was observed in the cell subtype analyses (Sup-
plementary Fig. 4).

To assess the extent of eQTL sharing between cell types, we com-
puted a π1 statistic (Fig. 2c). Aside from endothelial cells, which had a 
limited number of eGenes given their low frequency among the nuclei, 
the six other cell types had a high degree of eGene sharing (π1 = 0.53–
0.94). For cis-eQTLs shared and significant in two cell types, Fig. 2d 
shows that the vast majority of shared eQTLs had the same direction 
of effect and similar effect sizes (Supplementary Fig. 5a,b). However, 
there were cell type-specific effects: APP, an important gene related 
to AD, was associated with rs128648 only in oligodendrocytes (Fig. 2e) 
and APOE, expressed in six cell types, showed a new cis-eQTL effect 
unique to microglia (Fig. 2f). APOE is one of the key genes upregu-
lated in disease-associated microglia found in amyloid proteinopathy 
models18. This APOE locus variant, rs2288911, is associated with AD in 
published GWAS (P = 1.0 × 10−12 and P = 6.0 × 10−10)19,20. However, this 
variant was not associated with amyloid or tau proteinopathy (P > 0.05) 
in ROS/MAP. Nonetheless, it was associated with the burden of cerebral 
amyloid angiopathy (CAA) (P = 1.18 × 10−7) (Supplementary Fig. 6); this 
association persisted even after accounting for the effect of APOEε4 
(P = 9.9 × 10−6). There was no evidence of an interaction between the 
effects of rs2288911 and APOEε4 on CAA burden (P > 0.05). There-
fore, this microglial eQTL was independent of the APOEε4 haplotype, 
which alters the coding sequence of APOE and does not affect the APOE 
expression level. Thus, increased expression of APOE in microglia 
leads to more CAA but not AD pathology, causing microhemorrhages 
that contribute to dementia, potentially explaining the association 
to AD dementia. The rs2288911 variant may also be relevant for risk 
stratification in current anti-amyloid antibody treatment protocols, 
as amyloid-related imaging abnormality (ARIA) is an adverse event 
of these therapies and is already reported to be influenced by the 
APOEε4 allele21.

Comparison to existing datasets
To assess the robustness of our eQTL results, we expanded an earlier 
effort5 and mapped cis-eQTLs from bulk DLPFC RNA-seq data from 
1,092 ROS/MAP participants (Supplementary Table 4); 408 participants 
were shared between the bulk and snRNA-seq analyses. Figure 3a shows 
that most eGenes were detected in both datasets. The bulk-specific 
effects are not surprising given the greater sample size and greater 
complexity of the bulk transcriptome (which contained cytoplasmic 
RNA) relative to nuclear data. However, 40% of snRNA-seq-derived 
eGenes were not discovered in the larger bulk cortical RNA-seq dataset 
from the same brain region, confirming the importance of mapping 
eGenes at the single-cell level. As expected, sharing (π1 statistic) with 
the bulk results was greatest in those more abundant cell types (Fig. 3b 
and Supplementary Fig. 7).

We also compared our microglial results from snRNA-seq to a 
recently published set of eQTLs from bulk microglia isolated from 
autopsy tissue11: there was modest overlap between the two datasets 
(Supplementary Fig. 8). The limited overlap may be partly explained 
by the single-nucleus nature of our study, which cannot detect cyto-
plasmic RNA, the different brain regions profiled and the small sample 
size of the bulk microglial profiles (n = 77).

Finally, we also compared our results to those recently generated 
from the merger of several small snRNA-seq datasets from different 
brain regions12. In these analyses, we validated many results of the 
earlier, smaller effort: 80% of cell type–eGene pairs in the previous 
study are included in our results (Fig. 3c) (π1 = 0.90 when the results 
of the previous manuscript were used as reference). However, our 
larger, coherent dataset uncovered 15,335 new eGene–cell type pairs; 
importantly, we mapped eGenes at the cell subtype level, which the 
earlier effort did not.

Translating results in vitro to guide functional studies
To evaluate how well our eGenes translate to model systems, we repur-
posed bulk RNA-seq data from iPSC-derived neurons (n = 44) and 
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astrocytes (n = 38) derived from ROS/MAP participants22. Given the 
modest iPSC sample size, we limited our evaluation to replicating the 
excitatory neuron and astrocytic eGene results (Fig. 3d). A total of 6,414 
genes were expressed in both iPSC-derived neurons and excitatory 
neuron nuclei; 234 genes (3.6% of the assessed eGenes) were associated 
with the predicted expression SNPs (eSNPs) in iPSC-derived neurons 
(FDR < 0.05). This is significantly more frequent than random pairs of 
genes and SNPs (P < 1 × 10−6). For astrocytes, 121 of 2,529 (4.8%) eGenes 

were reproduced in iPSC-derived astrocytes (P < 1 × 10−6). This analysis 
shows that many eQTL effects are reproduced in an artificial, in vitro 
context. Effect sizes were largely similar and most were in the same 
direction (snRNA-seq versus iPSC-derived neuron and astrocyte data) 
(Fig. 3e,f). However, there were some interesting exceptions, including 
the MAPT gene, which encodes the tau protein. rs11100065 is an eSNP 
in all four contexts, but the direction of the effect on MAPT expression 
is inverted in the iPSC-derived contexts (Fig. 3g). Given the strength 
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of the effect in vitro, its presence in both iPSC-derived neurons and 
astrocytes and the fact that most eGenes had an effect in the same direc-
tion (snRNA-seq versus iPSC-derived), this is unlikely to be a statistical 
fluctuation. This observation needs further validation, particularly 
because two other studies of bulk neocortical data reported a direction 
of effect similar to iPSC-derived cells23,24. Nonetheless, it is a cautionary 
tale that even well-studied but genetically complex loci, such as MAPT, 
can harbor substantial surprises in model systems.

Chromatin annotation of cis-eQTLs
We annotated our results with available epigenomic features from 
bulk DLPFC1 and relevant cell types25. Figure 4a illustrates the expected 
enrichment of eSNPs within approximately 100 kb of the target gene’s 
transcription start site (TSS)26,27. Furthermore, these eSNPs were 
enriched in DLPFC euchromatin (transcriptionally active regions 
and enhancers) and relatively depleted in heterochromatic regions 
(Fig. 4b). We also saw larger enrichment among TSS (Fig. 4c) and enrich-
ment among enhancers annotated in the corresponding reference 
cell type. eSNPs for microglial eGenes were more likely found in the 
enhancer regions found in bulk microglia than in bulk neurons, oli-
godendroglia or astrocytes. In Fig. 4d, we show the distribution of 
peaks from chromatin immunoprecipitation followed by sequencing 
(ChIP–seq) in the APOE locus relative to the rs2288911 SNP that drives 
a microglial-specific cis-eQTL of APOE (Fig. 2f). This SNP is 40.2 kb 
from APOE (near another gene, APOC2) but in a chromosomal segment 
decorated, only in microglia, with H3K27ac and H3K4me3, two marks 
associated with active enhancers and promoters, respectively. Further-
more, proximity ligation-assisted chromatin immunoprecipitation 

sequencing (PLAC-seq) data suggested that this chromosomal segment 
was in physical proximity to the APOE gene25, which was also in an active 
conformation. Thus, it is plausible that this variant may be driving the 
observed effect on microglial APOE expression, while the astrocytic 
APOE locus (which is also in a transcriptionally active conformation) 
is unaffected by rs2288911, suggesting that the risk allele at this SNP 
may have a key role in the accumulation of CAA through an effect on 
microglia as described above.

Variants influencing the proportions of cell subtypes
Figure 5a and Supplementary Table 5 present the results of fraction 
quantitative trait locus (fQTL) analyses. Assessing the heritabil-
ity of each subtype frequency, only committed oligodendrocyte 
precursors (COPs) showed modest evidence of heritability (Sup-
plementary Table 6). The statistical power of our dataset may be 
insufficient to evaluate heritability, but these results suggest that 
the frequency of many of these subtypes may not be strongly influ-
enced by genetic variation.

We then examined the relevance of fQTLs to AD risk. Among the 
AD risk SNPs we tested28, rs5011436 coincided with the fQTL of excita-
tory neuron 3 (Exc.3) (Fig. 5b). This TMEM106B locus SNP was the 
sole fQTL for Exc.3 (Fig. 5c). Using the CelMod method15, we inferred 
the proportion of all cell subtypes in bulk DLPFC RNA-seq data from 
an independent set of 602 ROS/MAP participants (Methods). The 
Exc.3 fQTL with rs5011436 was replicated in these imputed cell type 
frequencies (P = 1.5 × 10−7). The SNP not only was an fQTL but also had 
a cis-eQTL effect on TMEM106B expression in bulk cortical RNA-seq 
data (Fig. 5d–f). The major allele rs5011436A is a risk allele for AD20,28, 
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but this association may derive from its effect on susceptibility for 
frontotemporal dementia (FTD)29, which may be why this locus emerges 
in certain AD genome-wide association study (GWAS). In addition, we 
ran a meta-phenome-wide association study (PheWAS) for this variant 
using the UK Biobank and the eMERGE-III data30,31; interestingly, the 
two significant results out of 1,817 clinical traits tested were related to 
diabetes (Supplementary Fig. 9 and Supplementary Table 7); three of 
the top five suggestive results (P < 0.001) were related to atherosclero-
sis and included cerebrovascular disease. This is notable because both 
diabetes and vascular disease influence the risk of AD and dementia. 
Therefore, this TMEM106B variant may influence certain neuronal 
proportions through vascular and metabolic effects.

Colocalization with disease susceptibility
An important use of our cis-eQTL results involves aligning them with 
the results of gene discovery studies to assess whether altered gene 
expression may be the mechanism for a particular risk allele. Using 
Coloc (v5.1.0), a GWAS of AD and dementia28 and our eGenes, we found 
evidence of colocalization (posterior probability of the H4 hypothesis 
(PP.H4) > 0.8) for 21 eGenes among the 20 AD loci that we interrogated 

(Fig. 6a). We confirmed some of the well-validated results, such as the 
BIN1 risk haplotype tagged by rs4663105, the susceptibility haplotype 
with the largest effect size for AD after APOE, which drives BIN1 expres-
sion only in microglia11; other cell types express BIN1 but do not exhibit 
this effect. More interesting is that we found four new colocalizations 
with our data: AC004797.1, AL596218.1, AP001439.1 and ITGA2B. As 
expected with AD, we found that microglia harbored the most impli-
cated target genes, although all other neocortical cell types were also 
implicated by our colocalization analysis (Fig. 6a). Endothelial cells had 
few nuclei per participants and thus have very few eGenes so far. Thus, 
we cannot interpret the lack of colocalization so far in this cell type. 
While many loci had unambiguous cell type-specific effects (that is, 
CASS4 or ACE), one had an effect in three cell types (APH1B: astrocytes, 
excitatory neurons and oligodendroglial cells) and another had dis-
tinct target genes in two cell types (CCDC6: astrocytes and microglia). 
While strong posterior probabilities were seen in most loci, some loci 
had poor (ZCWPW1) or muddled evidence of colocalization that will 
require further dissection (SCIMP1). As reported previously, we found 
colocalization in the GRN locus; however, interestingly, it was found 
in both oligodendroglial cells and excitatory neurons. Furthermore, 
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there was some evidence that another gene, ITGA2B, may also be impli-
cated (although modestly) in excitatory neurons. To gauge gains from 
single-nucleus analysis, we repeated the AD colocalization analysis 
using bulk eQTLs and subtype-level eQTLs. Compared to 21 colocalized 
eGenes found in cell type-level eQTLs, bulk eQTLs and subtype-level 
eQTLs had eight and 11 colocalized eGenes (Supplementary Fig. 10a). 
This demonstrates that cell type-level analysis substantially improved 
colocalization of AD GWAS signals over the analysis of bulk data and that 
subtype-level analysis can further augment the yield of such analyses.

While data from the frontal cortex from aging individuals and 
individuals with AD may be most relevant to interpreting the results 
of AD GWAS, we conducted similar analyses for schizophrenia (SCZ), a 
neuropsychiatric disease with frontal cortex involvement, and identi-
fied 57 loci colocalized with 75 eGenes (Fig. 6c). In Parkinson’s disease 
(PD), we identified 11 loci mapping to 13 eGenes (Fig. 6b). For ALS, 
Coloc identified one locus and one eGene (Supplementary Fig. 10b). 
For both PD and SCZ, we found that excitatory neurons achieved the 
largest number of colocalized loci. The results of our colocalization 
analyses for these and other central nervous system-related traits, 
such as educational attainment and brain volumetric measures, are 
summarized in Supplementary Tables 8 and 9.

Gene prioritization for AD and neuropsychiatric diseases
In our data, we found that the expression level of thousands of genes 
was strongly heritable in all cell types except endothelial cells, which 
were undersampled in our dataset (Supplementary Fig. 10c and 
Supplementary Table 10). Heritability was assessed using genomic 
relatedness-based restricted maximum-likelihood (GREML) 
with a threshold of P ≤ 0.05 (ref. 32). This enabled us to perform a 
‘transcriptome-wide association study’ (TWAS) for each cell type in 

which we inferred gene-level association statistics by combining the 
GWAS results for a trait and a gene’s model to infer RNA expression. 
This was complementary to colocalization studies and was particularly 
helpful in prioritizing genes for further evaluation in loci where no 
individual variant reached a threshold of genome-wide significance. 
In Fig. 6d, we display summaries of the TWAS for different diseases, 
confirming the large excess of microglial genes involved in AD relative 
to other neuropsychiatric diseases. Figure 6e and Supplementary Fig. 11 
highlight FNIP2 and RAPGEF2, two of 24 microglial genes that have not 
previously been associated with AD in similar analyses using other 
RNA data. Supplementary Tables 11 and 12, and Supplementary Figs. 12 
and 13, report the TWAS results for other neuropsychiatric diseases, 
educational attainment and brain volumetric measures.

The TWAS analysis was also helpful in supporting the colocaliza-
tion results. For example, all nine microglial colocalized effects in AD 
were also found in the TWAS; when the lead SNP (and those in strong 
linkage disequilibrium (LD)) were removed, the TWAS analysis was still 
positive, suggesting that there may be additional significant associa-
tions beyond the lead haplotype in those susceptibility loci.

Discussion
In this study, we constructed a single-nucleus-based eQTL resource 
for the aging neocortex and cataloged the genetic regulation of gene 
expression in each cell type and subtype. This provides a substantial 
advance over the previous existing effort, which identified only a third 
of our eGenes, had a much smaller sample size, collated data from dif-
ferent brain regions and only evaluated eQTLs at the cell type level12. 
One of our principal findings is that many eGenes were only discovered 
when analyses were conducted at the cell subtype level (Fig. 1g), high-
lighting an important strategic choice for future study design, that is,  
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result from one cell type in one disease: the statistical significance and effect 
direction of all inferred microglial genes are presented, with the physical position 
along the chromosome being presented on the x axis and the significance on the 
y axis. Each dot represents a gene. The positive and negative y coordinates show 
that transcript abundance was associated with increased and decreased risk of 
AD, respectively. The y axis between −10 and 10 has been enlarged to enhance 
visibility. New and known candidates for AD risk genes in microglia are colored 
black and gray, respectively. The red dashed lines highlight the threshold of 
FDR = 0.05. P values were determined using two-sided z-tests.
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sequencing a larger number of nuclei per participant may be more 
important than increasing sample size.

Our analysis detected many eQTLs not found in bulk brain tissues 
(Fig. 3a), despite analyzing less than half the specimens used in the 
bulk analysis, reflecting cell type-specific and cell subtype-specific 
regulation of gene expression (Fig. 4c). As exemplified by APOE, we 
found that eGenes were often expressed in multiple brain cell types 
but genetically regulated in only one cell type, reflecting perturbation 
of context-specific enhancer elements. The significantly greater slope 
for eGene discovery in cell subtypes (Fig. 1e,f) may arise because cell 
subtype-specific variation in enhancer function may be better tolerated 
than similar effects at the cell type level, where its effect would affect 
all cells of a certain type. Genetic variation influencing gene expression 
at the cell subtype level may thus be less likely to be selected against 
over evolutionary time scales. The microglial-specific APOE eQTL is 
probably driven by a variant in a microglial enhancer that is brought 
into contact with APOE by a chromatin loop; interestingly, this variant 
also influences the accumulation of CAA (an amyloid-driven vasculopa-
thy) but not parenchymal amyloid plaques or tau tangles. On the other 
hand, the well-known APOEε4 haplotype influences all three AD-related 
pathologies. This provides an important mechanistic insight. APOE 
RNA expression levels secreted by microglia exert a causal role in CAA 
while they do not affect parenchymal amyloid proteinopathy or taupa-
thy. Microglia are certainly involved in both AD and CAA processes, but 
only the coding variants that define the AD susceptibility haplotype, 
which are not strongly related to gene expression, influence AD paren-
chymal pathology. This result is consistent with reports of increased 
APOE expression at the site of CAA33 and of reduced CAA accumulation34 
in mice treated with an anti-APOE antibody. This new APOE variant may 
have clinical relevance because the presence of CAA is a risk factor for 
ARIA after anti-amyloid antibody treatment, and APOEε4 is a major 
risk factor for ARIA21.

Mapping the eQTLs of rare cell types, such as microglia, has been 
a technical challenge. Recent efforts to map microglia eQTLs relied on 
dissociation and purification of microglia10,11,35. However, enzymatic 
dissociation of brain tissues can induce artifactual gene expression 
changes, especially in microglia36. On the other hand, our single-nucleus 
eQTL analysis suffered from low detection power in less common cell 
types, including microglia; as such, cells and cell subtypes had fewer 
genes detected and tested for eQTLs. One solution to this issue would 
be to sequence individuals more deeply using single-nucleus analysis. 
As library preparation costs drop, this approach may become more 
feasible than cell purification, which is arduous for most neocortical 
cell types and could lead to exclusion of certain cell subtypes. Sample 
multiplexing approaches can substantially reduce costs and batch 
effects, as we demonstrated in this study, which relied only on genetic 
demultiplexing without antibody-based tags; this minimizes manipula-
tion of the samples (versus nuclear hashing) and reduces the quantity 
of sequencing needed13.

iPSC-derived neurons and astrocytes are being used to explore 
the functional consequences of genetic variants22,37; we confirmed 
that a significant fraction of our brain-derived eGenes was replicated 
in both iPSC-derived neurons and astrocytes, despite a small sample 
size and thus limited statistical power. Most eQTLs had the same effect 
direction in vivo and in vitro. However, some eQTLs, including the one 
affecting the MAPT gene, had opposite effect directions (Fig. 3e,f), 
suggesting that genetic effects are highly context-specific and that 
caution is needed when extrapolating brain-derived genetic effects to 
this model. This type of context-specific inverse eQTL directionality has 
been noted previously in a minority of genes, such as CD52, the target 
of alemtuzumab, when comparing monocyte and CD4+ T cell eQTLs 
derived from the same blood samples38.

Functional follow-up of disease variants identified in GWAS has 
lagged behind gene discovery efforts. Our colocalization analysis 
revealed cell types and even subtypes where risk variants exert their 

effect, guiding the design of experiments in the proper context. Fur-
thermore, TWAS results clearly indicate that, while microglia in AD and 
neurons in SCZ, PD and educational attainment are targets of predilec-
tion for genetic susceptibility, all cell types harbor the primary effect 
of some disease susceptibility variants: these genetically complex 
traits are cellularly distributed, highlighting that it is the summary of 
perturbations across pathogenic cellular communities that leads to 
disease13. We can now begin to identify points of convergence in such 
communities to develop new therapeutic interventions.

Overall, we systematically mapped the effect of genetic variation 
across a wide variety of cellular contexts in the aging brain. While we 
characterized many disease loci, it is clear that many more eGenes 
remain to be discovered. We also highlighted deeper sequencing to 
better resolve cell subtypes as an important aspect of the path forward.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Study participants
All brain specimens were derived from two longitudinal clinico- 
pathological cohort studies, that is, the ROS and MAP16. In both cohorts, 
participants did not have known dementia at the time of enrollment. 
Participants agreed to receive clinical evaluation each year and to donate 
their brain at the time of death. Because ROS and MAP are prospective 
cohorts, participants with incident dementia after enrollment are char-
acterized before death. The two studies were designed and are run by the 
same group of investigators, with a large core of identical antemortem 
and postmortem phenotypic data collection. Thus, they are designed to  
be analyzed jointly44 and are referred to as ‘ROS/MAP’. Each study was 
approved by the institutional review board of Rush University Medical 
Center. All participants signed a written informed consent, Anatomical 
Gift Act and repository consent. For this study, we selected 479 specimens 
based on availability of frozen pathological material from the DLPFC; only 
participants with a postmortem interval less than 48 h were considered, 
as in our previous studies45. At the end of our data preprocessing and 
quality control analyses (described below), we excluded 19 individuals 
without whole-genome sequence data, leaving 424 participants retained 
for the genetic analyses. Their demographic and clinicopathological 
characteristics are described in Supplementary Table 1.

WGS
The WGS of ROS/MAP participants were performed as described previ-
ously46. Briefly, DNA was extracted from brain or blood samples. WGS 
libraries were prepared using the KAPA Hyper Library Preparation Kit 
and sequenced on an Illumina HiSeq X sequencer as 150-bp paired-end 
reads. Reads were mapped to the reference human genome GRCh37 
using the Burrows–Wheeler Aligner-MEM (v.0.7.8); variants were called 
using the GATK HaplotypeCaller (v.3.4.0). For this study, the vari-
ant call format (VCF) file was lifted over to the GRCh38 using Picard’s 
LiftoverVcf (v.2.18.14); only variants that passed the GATK filter were 
used. These WGS VCF files are available from the AD Knowledge Portal 
(https://www.synapse.org/#!Synapse:syn11724057).

Library preparation and sequencing of single nuclei
Each batch of samples for library construction consisted of eight par-
ticipants, except for batch B63, which consisted of seven participants. 
Batches were designed to balance clinical and pathological diagnosis 
and sex as much as possible (Supplementary Fig. 14). DLFPC tissue 
specimens were received frozen from the Rush Alzheimer’s Disease 
Center. We observed variability in the morphology of these tissue 
specimens with differing amounts of gray and white matter and pres-
ence of attached meninges. Working on ice throughout, we carefully 
dissected to remove white matter and meninges, when present. The 
following steps were also conducted on ice: about 50–100 mg of gray 
matter tissue was transferred into the dounce homogenizer (catalog 
no. D8938, Sigma-Aldrich) with 2 ml of NP-40 lysis buffer (0.1% NP-40, 
10 mM Tris, 146 mM NaCl, 1 mM CaCl2, 21 mM MgCl2, 40 U ml−1 of RNase 
inhibitor (catalog no. 2313B, Takara Bio)). Tissue was gently dounced 
while on ice 25 times with Pestle A followed by 25 times with Pestle B, 
then transferred to a 15-ml conical tube. Then, 3 ml PBS + 0.01% BSA 
(catalog no. B9000S, New England Biolabs) and 40 U ml RNase inhibi-
tor were added for a final volume of 5 ml and then immediately cen-
trifuged with a swing bucket rotor at 500g for 5 min at 4 °C. Samples 
were processed two at a time, the supernatant was removed and the 
pellets were set on ice to rest while processing the remaining tissues 
to complete a batch of eight samples. The nuclear pellets were then 
resuspended in 500 ml of PBS + 0.01% BSA and 40 U ml−1 of RNase 
inhibitor. Nuclei were filtered through 20-µm pre-separation filters  
(catalog no. 130-101-812, Miltenyi Biotec) and counted using the Nex-
celom Cellometer Vision and a 2.5 µg µl−1 DAPI stain at 1:1 dilution with 
the cellometer cell counting chamber (CHT4-SD100-002, Nexcelom 
Bioscience). Five thousand nuclei from each of eight participants 

were then pooled into one sample and the 40,000 nuclei in around 
15–30-µl volume were loaded into two channels on the 10X Single 
Cell RNA-seq Platform using the Chromium Single Cell 3′ Reagent  
Kits v.3. Libraries were made according to the manufacturer’s protocol.  
Briefly, single nuclei were partitioned into nanoliter-scale Gel Bead 
in Emulsion (GEM) in the Chromium controller instrument where 
complementary DNA (cDNA) shares a common 10X barcode from the 
bead. Amplified cDNA was measured using the Qubit HS DNA assay 
(catalog no. Q32851, Thermo Fisher Scientific) and quality-assessed 
by BioAnalyzer (catalog no. 5067-4626, Agilent Technologies). This 
whole-transcriptome-amplified material was diluted to less than 
8 ng ml−1 and processed through v.3 library construction; the resulting 
libraries were quantified again using Qubit and BioAnalyzer. Libraries 
from four channels were pooled and sequenced on one lane of the Illu-
mina HiSeq X by the Broad Institute’s Genomics Platform for a target 
coverage of around one million reads per channel. The same librar-
ies of batches B10–B63 were resequenced at the New York Genome 
Center using an Illumina NovaSeq 6000 system. The sequencing data 
of both the Broad Institute and New York Genome Center were used 
for analysis.

Processing of snRNA-seq reads
For each batch of snRNA-seq FASTQ files, the CellRanger software 
v.6.0.0 (10X Genomics) was used to map reads onto the reference 
human genome GRCh38, to collapse reads according to UMI and  
to count the UMI per gene per droplet. The ‘GRCh38-2020-A’ file set 
distributed by 10X Genomics was used as a transcriptome model. The 
--include-introns option was set to incorporate reads mapped to the 
intronic region of nuclear pre-mRNA into UMI counts. To call cells 
among the entire droplets, the remove-background module of Cell-
Bender (https://github.com/broadinstitute/CellBender) was applied to 
raw UMI count matrices. The admixture of ambient RNA was estimated 
and subtracted from the UMI counts using CellBender. These filtered 
UMI count matrices were used in the subsequent analyses. All raw and 
processed data are available through the AD Knowledge Portal (https://
www.synapse.org/#!Synapse:syn31512863).

Demultiplexing
Because our snRNA-seq library consisted of nuclei from eight indi-
viduals, each nucleus was assigned back to its participant of origin 
using each nucleus’s genotype data obtained from the snRNA-seq 
reads. We used two different procedures, depending on whether all 
eight individuals had been genotyped with WGS. When eight indi-
viduals were genotyped, we used the demuxlet software47. From 
the WGS-based VCF file of 1,196 ROS/MAP individuals, we extracted 
SNPs that were in the transcribed regions, passed a filter of GATK 
and at least one of the eight individuals had its alternate allele. The 
extracted SNP genotype data were fed to demuxlet along with BAM 
files generated by CellRanger. When fewer than eight individuals 
were genotyped, we used freemuxlet (https://github.com/statgen/ 
popscle), which clusters droplets based on SNPs in snRNA-seq reads  
and generates a VCF file of snRNA-seq-based genotypes of the clusters.  
The number of clusters was specified to be eight. The snRNA-seq- 
based VCF file was filtered for genotype quality greater than 30 and  
compared with the available WGS genotypes using the BCFtools  
gtcheck command (v.1.9). Each WGS-genotyped individual was 
assigned to one of the droplet clusters by visually inspecting a heatmap  
of the number of discordant SNP sites between snRNA-seq and WGS. 
The above two procedures converged to a table that mapped droplet 
barcodes onto inferred individuals. Each BAM file generated by Cell-
Ranger was split into eight per-individual BAM files, each of which 
contained reads from distinct individuals, using subset-bam (v.1.1.0) 
(https://github.com/10XGenomics/subset-bam). The UMI count 
matrices filtered by CellBender were split into eight per-individual 
UMI count matrices.
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Quality control
Among 479 specimens analyzed by snRNA-seq, 19 specimens were 
excluded from our analyses because they did not have WGS genotypes. 
Also, three specimens were excluded at the stage of freemuxlet-based 
demultiplexing because they had ambiguity in the assignment of drop-
let clusters to individual genotypes. To identify and exclude poten-
tial sample swaps in the remaining 457 specimens, we assessed the 
concordance of genotypes between snRNA-seq and WGS. Logarithm 
of the odds (LOD) scores, a metric of genotype concordance, were 
computed by comparing the per-individual BAM files with the WGS 
genotypes of matched individuals using Picard CrosscheckFingerprints 
(v.2.25.4). We used a haplotype map downloaded from https://github.
com/naumanjaved/fingerprint_maps. After inspecting a histogram of 
LOD scores, ten specimens whose LOD scores were less than 50.0 were 
filtered out. These specimens received few cells by the demultiplexing 
procedure and were set aside from future reprocessing. As another 
measure to detect sample swaps, we checked RNA expression levels 
of the XIST gene and confirmed that they were consistent with the 
clinical sex of the remaining 447 specimens. Three individuals were 
further excluded because they failed the quality control of the WGS; 
two were marked as potential sample swaps among WGS and the other 
was marked as an outlier based on genotype principal component 
analysis. The latter individual was discarded given the preference to 
have a genetically homogeneous set of individuals for QTL mapping.

Four specimen-level sequencing metrics were computed from 
the per-specimen UMI count matrices: (1) estimated number of cells; 
(2) median UMI counts per cell; (3) median genes per cell; and (4) total 
genes detected. After inspecting these metrics, eight specimens whose 
median UMI counts per cell were less than 1,500 were excluded. Among 
the remaining 436 specimens, 12 individuals were sequenced twice in 
distinct batches. After comparing sequencing metrics, one of these 
duplicates was excluded from further analyses. After these quality 
control processes and matching to whole-genome sequence data was 
available, 424 individuals remained.

Classifications of cell types
In this section, we outline our classification procedure of cell types. The 
details can be found in our accompanying paper13. The classification 
procedure of cell subtypes is shown in the Supplementary Methods.

Normalization and clustering pipeline. The following pipeline was 
executed on the RNA count matrix: normalization and scaling by 
SCTransform method (with variable.features.n = 2,000, conserve.
memory = T; Seurat package v.4 (ref. 48)), dimensionality reduction by 
principal component analysis (Seurat RunPCA, npcs = 30), construc-
tion of k-nearest neighbor graph (Seurat FindNeighbors, dims = 1:30) 
and Louvain community detection clustering (Seurat FindClusters, 
resolution = 0.2, algorithm = 1).

Automatic classification of cell types. We automatically classified 
nuclei into one of the following eight major cell types: excitatory neu-
rons; inhibitory neurons; astrocytes; microglia; oligodendrocytes; 
OPCs; endothelial cells; and pericyte cells. The automatic annotations 
of nuclei, was done using a weighted elastic-net-regularized logistic 
regression classifier, fitted over our previous atlas of human aging 
DLPFC from 24 donors15 with a total of 182,739 nuclei. The gene count 
matrix of the previous atlas15 was log-normalized (Seurat Normalize-
Data) and scaled (Seurat ScaleData, method = vst) over the top 700 
variable features (Seurat FindVariableFeatures, excluding noncoding, 
nonannotated loci).

To select the optimal regularization parameter, we applied ten-
fold cross-validation (cv.glmnet method, glmnet package49,50) over a 
randomly selected 75% of the data. To ensure capture of rare cell types, 
such as pericytes, we weighted samples as for the number of nuclei of 
cell types present in the training set. We selected the elastic-net mixing 

parameter (to increase the sparsity of the fitted model) by evaluating 
test accuracy over the remaining 25% of the data. The fitted model used 
only 121 features and achieved a test accuracy of 99.95%.

Removal of low-quality cells. Low-quality nuclei were identified by the 
total number of UMIs and the number of unique genes. Because different 
brain cell types have inherently different RNA quantities, we learned cell 
type-specific thresholds over these parameters. Thresholds were opti-
mized based on hand annotation of ten pooled libraries and applied to 
all 128 libraries to classify low-quality cells, and then removed from the 
downstream analysis. The clusters of the ten pooled libraries were manu-
ally curated to low-quality and high-quality clusters based on the total 
number of UMIs and unique gene distributions (Seurat VlnPlot). Then, 
we selected the cell type-specific thresholds as the median of all optimal 
total number of UMIs and unique gene parameter pairs, scored using 
the harmonic mean of precision and recall. The total number of UMIs 
and unique gene thresholds were: excitatory neurons 2,232 and 1,916; 
inhibitory neurons 800 and 100; astrocytes 800 and 616; microglia 400 
and 253; oligodendrocytes 400 and 253; OPCs 695 and 253; vascular cells 
400 and 253; and pericyte cells 400 and 100, respectively. Low-quality 
clusters were also removed using a soft support vector machine classifier 
fitted over the ten pooled libraries and using the (1) proportion of nuclei 
annotated as low quality (by the total number of UMIs and unique gene 
threshold); (2) the average entropy of cell type prediction; and (3) the 
proportion of doublets using the demuxlet algorithm.

Doublet detection. Doublets were identified using the demuxlet algo-
rithm, based on the sample barcodes. The additional doublets within a 
sample were predicted in silico based on their RNA profiles. To predict 
doublets, we ran DoubletFinder51 (DoubletFinder_v3 method, pN = 0.5, 
pK = 75/(1.5 × (no. of nuclei in the library)), nExp = 0, sct = T) over each  
of the libraries. The doublet threshold for the DoubletFinder pre-
dictions was determined for each library, based on the maximal  
Matthew’s correlation coefficient compared to the demuxlet-identified 
doublets. Furthermore, because DoubletFinder is not designed to 
identify doublets of the same cell type, we modified it to simulate 
doublets of parent nuclei of different cell types, inferred based on 
the cell type classification. Using high-resolution clustering of the 
nuclei (Seurat FindClusters, resolution = 1.5), we expanded and marked 
as a doublet any nuclei predicted to be a demultiplexed doublet, a  
DoubletFinder doublet or belonging to a cluster consisting of more 
than 70% DoubletFinder doublets.

Pseudobulk expression quantification
As we mentioned, our snRNA-seq libraries were prepared in duplicate. 
The UMI counts of the two replicates from the same individual were 
aggregated together. For each cell type, individuals who had fewer than 
ten cells were excluded from expression quantification for that cell 
type. Rare cell types were excluded from subsequent analysis if fewer 
than ten individuals were available for expression quantification. We 
generated a pseudobulk UMI count matrix for each cell type by extract-
ing the UMI counts of the cell type and by aggregating the counts per 
gene per individual. Low-expression genes were filtered out using the 
filterByExpr function of edgeR (v.3.30.3) with its default parameters. 
The pseudobulk counts were normalized using the trimmed mean of 
M-values method of edgeR; the log2 of counts per million mapped reads 
(CPM) was computed using the voom function of limma (v.3.44.3). 
Low-expression genes whose log2 CPM was less than 2.0 were filtered 
out. Batch effects were corrected using the ComBat function of sva 
(v.3.36.0). Expression levels were quantile-normalized. Pseudobulk 
expression of cell subtypes was quantified using the same method.

Mapping of cis-eQTL
We used the Matrix eQTL v.2.3 method17 to identify cis-eQTLs with 1 Mb 
of the TSS of each measured gene (gene expression derived using log2 
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CPM). All bi-allelic SNPs with a minor allele frequency greater than 0.05, 
a call rate greater than 95% and Hardy–Weinberg P > 10−6 were retained 
for analysis. We used a linear model for gene expression whose explana-
tory variables were the allele counts of SNPs and several covariates. 
Statistical significance was determined from the t-statistic. Genotype 
principal components (PCs) were calculated using PLINK (v.1.90)52; we 
included the top three genotype PCs to account for residual popula-
tion structure among these individuals of European ancestry. We also 
calculated the expression PCs based on the RNA expression data within 
each cell type to identify the number of expression PCs that optimized 
cis-eQTL discovery by regressing out the nongenetic structure in the 
data; the results of these evaluations are shown in Supplementary 
Fig. 15. While there was some variation in the optimal number of PCs 
to include in each cell type, differences were small, and we opted to be 
consistent and to include the top 30 expression PCs as covariates. We 
also examined the postmortem interval and clinical traits of individu-
als as covariates, but they had little impact on the number of eQTLs 
detected (Supplementary Fig. 16). The final set of covariates were 
the top three genotype PCs, the top 30 expression PCs, age, sex, the 
postmortem interval, the study (ROS or MAP) and the total number of 
genes detected in each participant. Multiple hypothesis correction 
was performed using a two-step method. Gene-wise P values were 
determined by applying Bonferroni correction to the smallest nominal 
P value of each gene with the number of tested SNPs for the gene. The 
threshold for statistical significance of eGenes was set to an FDR < 5%, 
where the FDR was determined from gene-wise P values using the 
Benjamini–Hochberg method. The statistical significance of eSNPs was 
judged using nominal P values and its threshold was set to the largest 
nominal P value of the gene–SNP pair with an FDR < 5%. The lead eSNP 
was selected to have the smallest P value for each eGene. The mapping 
procedures for the fQTLs and bulk RNA-seq cis-eQTLs are described in 
the Supplementary Methods.

Meta-PheWAS
The Phenome-wide association analysis was performed using the 
eMERGE-III and UK Biobank datasets with the PheWAS R package. For 
details, see the Supplementary Methods.

Induced neurons and astrocytes
The iPSC lines were generated from ROS/MAP participants. The iPSC 
lines were differentiated into excitatory neurons and astrocytes. Bulk 
RNA-seq was performed on day 21 for iPSC-derived neurons and on 
day 28 for iPSC-derived astrocytes. For details, see the Supplementary 
Methods.

Chromatin states
Fifteen class chromatin states of a bulk DLPFC tissue (E073) were down-
loaded from the FTP site of the Roadmap Epigenome project. Cell 
type-specific enhancers and promoters of brain cells were downloaded 
from the UCSC genome browser (as of 11 March 2022; https://genome.
ucsc.edu/). The SNPs tested for the eQTLs were categorized into four 
groups based on whether they were eSNPs and whether they were in 
the chromatin state of interest. A contingency table was constructed 
using the number of SNPs in the four categories. The log odds ratio 
(OR) and P values of a two-sided Fisher’s exact test were determined 
with the R package epitools (v.0.5-10.1).

Coloc
The Coloc package (v.5.1.0) was used to apply the approximate Bayes 
factor (ABF) colocalization hypothesis, which was conducted using 
the coloc.abf() function, which is under a single causal variant assump-
tion. Under the ABF analysis, the association of the trait with SNPs 
can be achieved by calculating the posterior probability (from 0 to 1), 
with 1 indicating the causal SNP. In addition, the ABF analysis has five 
hypotheses, where PP.H0.abf indicates that there is neither an eQTL 

nor a GWAS signal at the loci; PP.H1.abf indicates that the locus is only 
associated with the GWAS; PP.H2.abf indicates that the locus is only 
associated with the eQTL; PP.H3.abf indicates that both the GWAS and 
eQTL are associated but to a different genetic variant; and PP.H4.abf 
indicates that the eQTL and GWAS are associated to the same genetic 
variant. With the posterior probability of each SNP and aiming to find 
the causal variants between the GWAS and eQTL, we focused on extract-
ing the PP.H4 value for each SNP in our study.

For the AD GWAS28, we used the reported lead SNPs of 38 loci. For 
each locus, we searched for the eSNPs within 500 kb of the lead SNP and 
listed the eGenes that were paired with the eSNP. We then obtained the 
eGenes cis-eQTL output around the lead eSNP within a 1-Mb window 
size. In addition, we extracted the GWAS summary statistics around 
the reported 38 lead SNPs. Finally, we conducted the Coloc for the 
respective eGene–eQTL pair and the eSNP–GWAS for each cell type. 
Similarly, for the PD GWAS41, there were 90 independent genome-wide 
significant risk loci. We picked one SNP with the smallest P value from 
each locus as the lead SNP for the Coloc analysis. For the SCZ GWAS42, 
270 risk loci were identified as relating to SCZ. The SNP from each locus 
was used for the Coloc analysis. For the ALS GWAS53, 15 risk loci were 
identified as relating to ALS and the SNP from each locus was used for 
the Coloc analysis. Besides the neurodegenerative diseases, we also 
conducted colocalization analysis on other brain traits, that is, edu-
cational attainment54 and brain volume. In terms of brain volume, we 
conducted Coloc using the GWAS summary statistics of intracranial 
volume55, hippocampal volume56, subcortical volume57, and cortical 
surface area and thickness58.

TWAS
We used the pseudobulk RNA-seq data and genotypes from ROS/MAP 
(424 individuals) to impute the cis genetic component of expression 
into multiple GWAS summary statistics as mentioned in the Coloc 
analysis. The complete TWAS pipeline was implemented in the FUSION 
(1 October 2019 version) suite of tools59. The steps implemented in 
FUSION are as follows. First, we estimated the heritability of gene 
expression and stopped if not significant. We estimated it using a robust 
version of GCTA-GREML60, which generates heritability estimates per 
feature as well as the likelihood ratio test P value. Only features with a 
heritability of P < 0.05 were retained for the TWAS analysis. Second, 
the expression weights were computed by modeling all cis-SNPs (±1 Mb 
from the TSS) using the best linear unbiased prediction, or modeling 
SNPs and effect sizes with a Bayesian sparse linear mixed model, least 
absolute shrinkage and selection operator, elastic-net and top SNPs59,61. 
Cross-validation of each of the desired models was then performed. 
Third, a final estimate of weights for each of the desired models was 
performed and the results were stored. The imputed unit was treated 
as a linear model of genotypes with weights based on the correlation 
between SNPs and expression in the training data while accounting for 
LD among SNPs. To account for multiple hypotheses, an FDR-corrected 
P threshold (FDR ≤ 0.05) was used to define significant TWAS associa-
tions. snRNA-seq from each cell subtype (sample size 100 or greater) 
was also imputed for the TWAS analysis.

Statistics and reproducibility
Statistical analyses were performed using R (v.4.0.0 or v.4.2.2) and are 
described in the figure legends.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequence and processed data of single-nucleus RNA-seq are avail-
able at Synapse (https://www.synapse.org/#!Synapse:syn31512863). To 
preserve the anonymity of study participants, access to the datasets 

http://www.nature.com/naturegenetics
https://genome.ucsc.edu/
https://genome.ucsc.edu/
https://www.synapse.org/#!Synapse:syn31512863


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01685-y

is restricted and requires a data use certificate (DUC) to be submit-
ted. To submit a DUC, please see https://adknowledgeportal.syn-
apse.org/Data%20Access. Cell (sub)type annotation and cell (sub)
type-level eQTL summary statistics are available at Synapse (https://
doi.org/10.7303/syn52335732). The cell type-level eQTLs of this study 
are also available from https://vmenon.shinyapps.io/rosmap_snrnaseq_
eqtl/. The VCF files of the WGS are available at Synapse (https://www.
synapse.org/#!Synapse:syn11724057). The reference human genome 
GRCh37 used for WGS variant calling is available from the European 
Molecular Biology Laboratory-European Bioinformatics Institute 
(https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/
human_g1k_v37.fasta.gz).

Code availability
All software used in the study is publicly available as described in the 
Methods and Reporting Summary. The custom code to prepare the 
pseudobulk gene expression and mapping cis-eQTL can be found at 
Zenodo (https://zenodo.org/records/10472216) and GitHub (https://
github.com/masashi-CU/snuc-eQTL).
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