The College of Physicians & Surgeons of Columbia University

Winter 2001

Nobelist
Eric Kandel

Also Inside:
• NIH Leader is Next Dean
• A Doctor as Patient
• The Dalai Lama’s Blessing
• Student View of Anatomy
Chairman, Editorial Board
Thomas Q. Morris, M.D.
Interim Dean for Clinical and Educational Affairs

Editor
Bonita Eaton Enochs
Assistant Vice President, External Relations
Director of Publications

Contributing Writers
David Biro
Nicholas Christy
Pamela Cooper
Michael Hyde
Tim Jancelewicz
James McKinnell
Mimi Zucker

Assistant to the Editor
Angela Muniz

Alumni News Editor
Marianne Wolff, M.D.

Alumni Writer
Peter Wortsman

Designer
Howard Roberts
HRoberts Design

Editorial Board
Rita Charon, M.D.
Jonah Essers’02
Kenneth Forde, M.D.
Bruce Forester, M.D.
Oscar Garfein, M.D.
Leonard C. Harber, M.D.
Erin Hickey’01
Edgar Housepian, M.D.
Georgiana Jagiello, M.D.
Jeremy Keenan’02
Jonathan LaPook, M.D.
Stephen E. Novak
Carmen Ortiz-Neu, M.D.
Herbert Pardes, M.D.
John Schullinger, M.D.
Joseph Tenenbaum, M.D.
John Truman, M.D.
Myron Weisfeldt, M.D.

P&S is published three times a year for alumni, faculty, students, and other supporters of the College of Physicians & Surgeons. It is published by the college and the P&S Alumni Association through the Office of External Relations.

Address correspondence to:

P&S Editor
College of Physicians & Surgeons
630 W 168th St.
New York, NY 10032

E-mail: pjournal@columbia.edu

Alumni should update their addresses by writing the Alumni Association at the address above or calling the alumni office at (212) 305-1454.

Faculty should contact their departmental administrators to update their addresses, obtained through the Columbia University personnel system.

Others with questions about the mailing list may contact the Office of External Relations at (212) 305-3877.

P&S is printed on recycled paper.
In This Issue

2 Faculty Remembered: Dickinson Richards, 1895–1973

4 Clinical Advances
- Endometriosis treatment informed by research
- Kreitchman PET Center
- Cyber surgeons

8 Research Reports
- Viagra may benefit heart failure patients
- Research finds clue to diabetes-heart disease link
- Complementary/alternative medicine and surgery
- Poor odor identification and Alzheimer’s
- Language production tasks can shift after brain damage
- Elderly who “eat and run” may risk fainting
- New evidence of link between common infection, stroke

12 Eric Kandel, M.D., University Professor, Nobel Laureate
Nobel glory returns to P&S

19 Starting Medical School with a Nod from the Dalai Lama
Two first-year students in a program conducted with a university in Israel begin their studies with encouragement from an unusual source.

20 When the Doctor Becomes the Patient
 Shortly after finishing his residency, David Biro, a 1991 P&S graduate, was diagnosed with a rare disease. He chronicles his experience in “One Hundred Days: My Unexpected Journey from Doctor to Patient.”

26 P&S Students
How the electronic curriculum transformed the learning experience for two students

28 P&S News

34 In Memoriam: Faculty and Alumni who have died

39 Alumni Section

Telling the story of an almost perfect man is difficult. How does a writer make vivid the life of a secular saint, a term the excessively modest Dickinson Richards would hate and deny? Reducing the career of "DWR" (that’s what his associates called him) to a few words is like demonstrating the vastness of an ocean by exhibiting a teacup filled with salt water.

DWR was born in Orange, N.J., while Victoria still ruled England and Cleveland presided over the United States. He sprang from two antithetical New England strains. The maternal side, in his words, was “non-conformist...innovators, scholarly non-meditative.” The paternal side: “believers, conformist...non-innovators, meditative, non-scholarly.” How those two opposing sets of DNA combined harmoniously to form the most balanced of men has so far eluded genetic science. Not long after being forcibly dragged to kindergarten he won all the prizes at the Hotchkiss School. At Yale he failed at crew, excelled at the high jump, and led his class through all four years, acquiring a classical education in English, Greek (winning a prize), history, mathematics, and natural sciences. During World War I he served in Europe as an artillery lieutenant. Attending medical school at P&S, he worked simultaneously toward an M.A. degree in physiology. Four years of medical residency at Presbyterian Hospital and a year of study in England followed. In 1928 he was appointed to the attending staff at Presbyterian and Bellevue. Courmand wrote that the two did not look into each other’s eyes but in the same direction. By continual exchange of ideas they learned to look at problems from many sides. DWR characterized those colloquies as “a spirited and pleasing interchange...between the adventurous French philosopher and the dogged interrogation of the New England puritan.” Workers in adjacent labs characterized the conversations as very noisy.

With many collaborators over the years, they established a cardiopulmonary laboratory at Bellevue, where most of the clinical work was done. Courmand and Richards pioneered the conceptual merger of the heart and lung into a single organ. Building some of their later circulatory studies on separate work by each man, some of it as part of the National Research Council’s Committee on Shock during World War II, they assembled a large team of gifted co-workers. Samples of blood were precariously

In the late 1920s, DWR met the brilliant French physiologist André F. Courmand and with him embarked on 40 years of studies in pulmonary and cardiac physiology starting with the question of precisely how the lung gets oxygen from the air into the bloodstream. At Presbyterian, DWR had by now met Dana Atchley and Robert Loeb, from whom he learned much about clinical investigation, e.g., their legendary joint work on the electrolyte disturbances of diabetic acidosis.

The partnership of Richards and Courmand began formally in 1932 at Presbyterian and Bellevue. Courmand wrote that the two did not look into each other’s eyes but in the same direction. By continual exchange of ideas they learned to look at problems from many sides. DWR characterized those colloquies as “a spirited and pleasing interchange...between the adventurous French philosopher and the dogged interrogation of the New England puritan.” Workers in adjacent labs characterized the conversations as very noisy.
conveyed uptown by subway to Presbyterian for lab analysis. The
table of transport was an old-fashioned leather valise carried by
DWR. For brevity, DWR summarized years of work into three cat-
egories, (four if you count the three years of frustration owing to
“faulty methods”): 1930 to 1944—methods and principles (pul-
monary insufficiency, ventilatory-aloeveral differences, lung vol-
ume); 1941 to 1970—heart and circulation (cathetherization, car-
diac output, shock, congenital heart disease, heart failure); and
1944 to 1970—the lung and its circulation (lung insufficiency, cor
pulmonale, ventilation-perfusion, metabolism of the lung).

These contributions, the basis for open-heart surgery, culmi-
nated in the Nobel Prize for Medicine in 1956 to Cournand,
Richards, and the German physician Werner O.T. Forssmann. It is
said that the modest, self-effacing DWR, who hated display and
adulation, went through a short, private spell of despondency just
after the prize, not a rare syndrome in men who have reached a
pinnacle. But, in the winter of 1957, he was his usual humorous
self during a mammoth reception that Columbia gave for him and
Cournand. The place swarmed with dignitaries. A young faculty
member asked DWR if everything was “smooth as glass.” DWR
replied wordlessly by nodding yes and stomping the floor several
times as if to flatten out rough terrain.

Always unassuming, never putting on airs, DWR received many
honors before and after the Nobel: lectureships, visiting profes-
sorships, awards from foreign governments, and other prizes. He
was offered several honorary degrees but refused all but two: Yale
and Columbia, his alma maters.

The world knows most of this about DWR. It remains to cata-
log the activities closer to home, in New York, at Presbyterian,
Bellevue, and P&S, to describe his beneficent, elevating effect on
the citizens of Columbia. He was an immensely complex man. Tall,
thin, seemingly austere, calm, in perfect control, he was capable
of intense emotion. This writer once encountered him at the old
Bellevue, in the 1960s, as he returned from the downtown office
of the city hospital commissioner Morris Jacobs where the two
argued hotly—for the 100th time—over DWR’s favorite topic, the
dilapidation of Bellevue owing to the city’s neglect. Richards was
quivering with rage, almost speechless. This was during his tenure
(1945 to 1961) as director of the First (Columbia) Medical Division
at Bellevue, where there prevailed a unifying, uplifting atmos-
phere of embattlement—us against them, us against the uncaring
city. This incident and others show what a powerful engine he had
inside him, strong enough to produce 175 papers and two books,
to run a medical service, give lectures, manage a laboratory and
get research funds for it, become an active social critic. He
remained active and industrious until his last days.

Much of his activity may be most briefly subsumed under the
heading of his command of language, “the highest attribute of civ-
ilized man.” In DWR, science and language were inseparable.
Different settings determined how, and how well, he used lan-
guage. On ward rounds, he was attentive, quiet, thrifty with
words, not vividly eloquent, far from flamboyant, the more force-
ful because contained. As a lecturer he was less effective; the dif-
ficence of his delivery often clouded his meaning. More than once,
after delivering a lecture, sometimes almost haltingly, he would
ask a colleague, “Was I as bad as usual?”

The written word was another matter; here Richards was at
home, in his element. His scientific papers are lucid, cogent, high-
ly communicative. In his years of “retirement”—1961 to 1973—he
wrote eloquently on medicine and society, the education of doc-
tors, medical ethics. He became the advocate of mercy and, as a
crusader, he helped bring about with his pen the series of events
that led to the building of the new Bellevue and other reforms in
the New York hospital system.

Not limited to English, he trained himself all his life to become
an accomplished scholar of ancient Greek. If someone quoted
Aristotle to him, he could go back to the Greek text and check the
citation for accuracy and context. He translated “Aphorisms” by
Hippocrates; his admiration for the Greek physician was
unbounded. DWR visited the plane tree on the island of Cos
where Hippocrates is supposed to have lectured. He picked up
seeds from under the tree and, thinking to plant them at home in
Connecticut, placed them in his suit pocket. Back at home, the
suit was sent to the cleaner.

The irony would not have been lost on DWR. His friend André
Cournand knew DWR harbored a “deeply felt pessimism,” not
Byronic gloom but a flinty facing up to things as they are—and
the moral strength to withstand it. In old age, he carried in his
wallet a piece of blue-lined yellow paper torn from a legal
notepad. On it, written in his fine, precise penmanship, appeared
these words, the last lines of Sophocles “Oedipus Rex”: “Count
no man happy till/He has passed the final limit of his life secure
from pain.”

Author’s Note: Fuller accounts of Dr. Richards’ life and career
can be found in the P&S archives; in Transactions of the
Association of American Physicians (1970); in the Summer 1973
issue of P&S Quarterly; and in the American Journal of
Medicine (September 1974). Especially informative was a 1973
memorial prepared for the minutes of the P&S Faculty Council
by André Cournand. The writer also received valuable help
from Bayard Clarkson, Caroline A. Christy, the late A. Gregory
Jameson, Marianne J. Legato, Gerard M. Turino, and Trevor E.G.
Thomas.
Endometriosis doesn't attract as much attention as, say, heart disease or cancer. It's not fatal and doesn't create an outwardly visible disability. But the sheer numbers of women affected by the disorder call for better access to treatment and research.

Motivated by these needs, Dr. Nabil Husami, associate clinical professor of obstetrics and gynecology, opened the Center for Endometriosis Treatment and Research at Sloane Hospital for Women in June 2000. Under the directorship of Dr. Husami, the center is the only facility in the northeastern United States that provides comprehensive treatment for the broad range of symptoms of endometriosis and teams clinicians with basic researchers to discover causes and find new treatments for the disease.

Endometriosis is characterized by the invasion of various abdominal locations by ectopic uterine tissue, or lesions. It's thought that the lesion tissue originates from uterine lining, or endometrium, which may aberrantly enter the body cavity through the fallopian tubes during menstruation. Endometrial lesion tissue may adhere to the bladder, ovaries, intestines, and other abdominal sites to produce a variety of symptoms, which may include pain, excessive bleeding, or infertility.

Endometriosis affects 8 percent to 10 percent of women of childbearing age, and hits as early as age 15. It covers a broad spectrum of severity. Many patients are unaware of their condition until they seek treatment for infertility. The high variability of endometriosis symptoms may hinder recognition of the condition by a physician, and definitive diagnosis is made only by surgery. Because so few endometriosis clinics exist, few women, once diagnosed, have ready access to health care professionals who specialize in treating the disease. The disease, therefore, remains undertreated, and progress in research on the disorder has been sporadic.

Dr. Joyce Lustbader, senior research scientist in obstetrics and gynecology, cites lack of public awareness as one factor limiting the availability of specialized treatment and research facilities. "A problem with endometriosis is that women don't like to talk about it," says Dr. Lustbader. "Because patients don't die from it, little attention is paid to it." Obstacles to cooperation between clinicians and researchers have been a barrier to endometriosis research. "It's really difficult to get clinically relevant tissue samples. We're only going to solve this problem if there is reciprocity between these two groups of professionals."

Forming the endometriosis center has eased that barrier. "What Nabil Husami has done has been to get together a group of individual clinical researchers, clinicians, and basic researchers," Dr. Lustbader says. "We have about 40 doctors—about half researchers, half clinicians. We've made a major effort to get our clinical research protocols standardized so we can really collect data effectively."

The center has made it much easier for women with endometriosis to obtain treatment for various sequelae of the disease. "If a person has pain, she's directed to a pain specialist," Dr. Lustbader says. "If a patient is depressed because of her condition, she might be directed to psychiatric services. This center can help with all aspects of endometriosis."
As a means to image not just the structures of tissues but also their metabolism in fine detail, positron emission tomography (PET) has become a valuable diagnostic tool in neurology, cardiology, and oncology. By expanding facilities to create novel radioligands that serve as markers for a wide variety of biochemical processes, the Kreitchman PET Center has expanded the diagnostic capabilities of PET to new disorders and identified new tools for basic and clinical research.

“PET is helping us understand pathology and physiology of disease and also helping us adjust patient dosage,” says Dr. Ronald Van Heertum, professor of clinical radiology, director of nuclear medicine, and director of the Kreitchman PET Center. Dr. Van Heertum has guided the expansion of research and clinical activities since the center’s founding in 1994. “In 1995, we made the decision to implement a strong clinical program to somewhat offset the cost of research,” says Dr. Van Heertum. “It’s now probably the most active scanning complex in the greater New York area.”

The increase in clinical activity has been accompanied by development of facilities for basic research. A second scanner was added in 1999, and a new radioligand labeling facility was installed in September 2000.

Dr. Steven R. Bergmann, professor of medicine and radiology and director of nuclear cardiology and cardiac PET, is studying new applications of PET in cardiology. One of the most noteworthy uses of PET has been to identify patients with heart failure who might benefit from bypass surgery. “We use PET for assessing blood flow and metabolism in the heart,” says Dr. Bergmann. It is particularly suited for patients who have had myocardial infarction, which can significantly impair left ventricular function. “An important question in these patients is whether the damaged heart muscle is dead, or merely ‘hibernating,’ and potentially able to function again once its blood supply is restored through revascularization. It can look dead, but we have an approach that looks at energy utilization—dead tissue doesn’t use energy.” Some non-functional heart muscle may never recover but in many cases PET was able to reveal sustainable myocardium. “With bypass revascularization in those showing sustainable myocardium, outcome was good.”

A profusion of new clinical diagnostic applications, many of them developed at CPMC, has driven a rapid expansion of the numbers of patients receiving PET scans at the Kreitchman facility. The increase also reflects the efforts of Strategic Outpatient Services, a private management and outreach operation directed by Dr. Ernest DeSalvo, assistant clinical professor of medicine at P&S. “Our business is education,” says Dr. DeSalvo. “We inform physicians about how to use PET scans in their clinical practice as well as on new indications for its use.

“The facility has seen a large increase in the number of scans performed. In 1996, we did about five patients per month; now it’s about 180,” says Dr. DeSalvo. A couple of factors have contributed to the increase. “First, physicians are becoming more knowledgeable about PET as a diagnostic tool. Second, the government has begun reimbursing for PET scans used in diagnosing or staging cancer. In December, the federal government announced that Medicare would expand its coverage of PET “for all clinically appropriate uses” (diagnosis, staging, and re-staging) in lung, colorectal, esophageal, and head and neck cancers and lymphoma and melanoma and would cover new neurologic and cardiac applications of PET for some patients with refractory epilepsy and patients who may be candidates for coronary revascularization.

For Dr. Bergmann’s research, that means Medicare will now pay for viability scans in some heart patients.

Strategic Outpatient Services updates physicians in the community when government and organized health care start covering new applications for PET.
In addition to gloves and mask, a wearable head-up computer display may soon become standard garb for surgeons in the OR. Although the idea may at first seem far-fetched and fantastic, Dr. Henry Spotnitz, the George H. Humphreys II Professor of Surgery, argues strongly that health care can’t really afford to be without these and other technological innovations for long.

A prototype head-up display that includes a miniature video monitor viewed with one eye enables surgeons at Columbia-Presbyterian to view vital signs without turning away from the patient. “Head-up displays were invented by the military for fighter pilots. Pilots have to continue to look at the target and still have vital info in view,” says Dr. Spotnitz. “This is exactly what we need in health care—in many situations, you cannot take your eye off of the patient during surgery.

“Monitoring is an important application for a head-up display,” he continues. “For instance, when a heart surgery patient is coming off of a heart-lung machine, the patient may be bleeding from the back of the heart. In this case, the surgeon needs to watch the patient’s condition while the heart is reflected and stitched—blood pressure, EKG, etc. could be monitored,” says Dr. Spotnitz. “If this information is continuously displayed, the surgeon is in a better position to judge when ‘enough is enough,’ when the surgeon should discontinue the procedure. There have been situations I’ve been in personally when the heart stops because the patient has gone into fibrillation with no warning. So monitoring is essential.”

During pacemaker, or defibrillator, implantation, when a potentially fatal arrhythmia could arise suddenly and require quick action, a surgeon can continuously monitor ECG information using the display. Previously, a surgeon inserting a catheter had to gain this information indirectly, via a verbal report from another individual watching a monitor. This second-hand communication of vital information costs the surgical team speed and accuracy.

“Another advantage of the head-up display is that it allows eye-hand coordination,” says Dr. Spotnitz. “This could greatly facilitate minimal access surgery.” The technology could vastly improve a surgeon’s ability to negotiate “blind” procedures. “We could have real-time echo displays that can tell the relationship between a needle and a vein, for instance.”

But Dr. Spotnitz sees many ways to further improve and expand on current technology. “Unfortunately, most head-up displays are not trans-
parent. Ideally, we’d need high-resolution color—very expensive. The displays need to be light enough not to cause fatigue in a surgeon during a several-hour operation.

Developing head-up displays for surgeons is a first step but is only a small part of the “big picture.” “To take in all the information a surgeon may need, the surgeon really needs computer access,” says Dr. Spotnitz. “We have shown that a wearable computer can be used in the OR.”

Dr. Spotnitz envisions surgeons accessing information even from beyond the OR. “How do you connect a surgeon to the web, for instance? We can use wearable computers, voice recognition, and a wireless connection,” Dr. Spotnitz offers, “This access would enable a surgeon to monitor EKG, check manufacturers’ recommendations, maybe even look up papers to check a procedure.”

Dr. Spotnitz would like to test wearable computers with head-up displays in a number of practical applications. “The first place we’d like to apply head-up displays would be for surgical teaching in OR—the instructor can reference histological slides of the pathology or diagrams of how the operation is done, for instance. Students can pull up these images while they’re watching the procedure.” Likewise, access to online reference materials may prove valuable for surgeons themselves. “Also, with the enormous numbers of new techniques, new medicines, and new equipment coming out, there’s a continual need for technical information. In the aerospace industry, pilots can view instructional movies while flying, for instance.”

Dr. Spotnitz cites ways in which head-up displays could give surgeons instant access to information from other departments within the hospital. “When a surgeon is doing a bypass, for instance, to find a blood vessel, the surgeon may need to view the patient’s angiogram. In the case of a gall bladder operation, a cholecystographic X-ray is taken. Normally, the X-ray is taken, film developed, and then taken back up to a board. If the X-ray could be taken digitally, instead, the digitized image could be accessed by the surgeon through the head-up connection.”

All elements of the proposed system already exist. “It’s all there. We’re just taking off-the-shelf technology.” Surgery funds are being used to purchase prototypes, which cost between $5,000 and $6,000.

“What we’re trying to do is to get to a place where we will demonstrate this technology and get funding. There is some interest from outside investors. Last year, there was an agreement with IBM that they would supply two or three wearable, head-up-display, wireless computers to demonstrate the capabilities.”
VIAGRA MAY BENEFIT HEART FAILURE PATIENTS

Viagra and related drugs may provide new treatment options for patients with chronic heart failure, according to P&S researchers. The study, published in the September 2000 issue of the Journal of the American College of Cardiology, suggests therapeutic potential for a new class of heart failure drugs.

Dr. Stuart D. Katz, associate professor of medicine at P&S, investigated the effect of sildenafil on the arteries of patients with heart failure. Sildenafil blocks the action of an enzyme, phosphodiesterase type 5, and thereby enhances the ability of nitric oxide to dilate blood vessels. Researchers believe that this enzyme may be overactive in heart failure.

The 48 study participants who were given low doses (25 milligrams) of sildenafil showed better artery dilation than patients given placebo. Dr. Katz notes that sildenafil itself would not be suitable for treating heart failure because the drug is short-acting. “However, this study provides the first evidence of therapeutic potential for a new class of drug,” says Dr. Katz.

The researchers are planning a study that will compare the effects of sildenafil with ACE inhibitors, drugs commonly used for treating heart failure. “There’s reason to believe that a combination of an ACE inhibitor and sildenafil might be beneficial,” says Dr. Katz. “They have different mechanisms of action, which could be additive.”

RESEARCH FINDS CLUE TO DIABETES-HEART DISEASE LINK

A n abnormality in a protein that helps clear fat from the blood may explain the greatly increased risk of heart disease for people with diabetes, according to research published by Dr. Neil S. Shachter and his colleagues at P&S in the June 2000 issue of the Journal of Clinical Investigation.

When a person eats fat, a series of steps must take place before the fats reach the cells where they are needed and for the liver to clear unwanted fats from the blood. Different proteins package, transport, and clear fat particles containing triglycerides through the body. Abnormalities in these proteins can lead to high levels of triglycerides in the blood, a major risk factor for heart disease.

Research by Dr. Shachter, assistant professor of medicine, suggests that abnormalities in a class of proteins called heparan sulfate proteoglycans (HSPGs) may explain the link between diabetes and heart disease. Researchers observed the metabolic effects of giving diabetic mice a large amount of fat to eat. “They clear it extremely poorly. This is similar to what we see in diabetic humans.”

When the researchers conducted a series of experiments to identify why this occurred, the only abnormality in fat metabolism they found was in the animals’ HSPGs. Unlike most proteins, HSPGs contain a large amount of structured sugar chains. These proteins have been shown to be abnormal in diabetic humans, but the consequences of this abnormality had not previously been determined.
Patients about to undergo cardiac surgery should be cautioned on the risk for potential adverse reactions from the use of alternative and complementary medicines. The study, reported in the August 2000 issue of the Journal of Thoracic and Cardiovascular Surgery, suggests that because the use of complementary and alternative medicine is so prevalent, health care providers should be aware of the serious implications for patient safety, especially in acute care situations.

Dr. Mehmet Oz, associate professor of surgery, and colleagues surveyed 376 mostly white, male, well-educated patients undergoing pre- or postoperative evaluations at Columbia-Presbyterian Medical Center. Dr. Oz noted that a large proportion of these patients were using complementary and alternative medicine therapies, but only a few patients were willing to discuss the use with their doctors. Excluding those who turned only to prayer or to vitamins—the most popular therapies—44 percent were found to have used some type of complementary and alternative treatments. Of that number, only 17 percent said they discussed the use of complementary and alternative medicine with their physicians, and 48 percent said they did not want to discuss the topic at all. "Patients don't even want to talk about it," says Dr. Oz, "so the physician may not be able to anticipate any adverse reactions that may result."

Several case reports have highlighted the dangers of herbal medicine, and the American Society of Anesthesiologists recently recommended that all herbal therapy be stopped two weeks before surgery. The study provides examples of several herbs that have been shown either to directly affect bleeding time or interact with anticoagulation medications. Garlic and onion, for example, inhibit platelet aggregation. Feverfew, ginkgo biloba, coenzyme Q_10, ginger, ginseng, and St. John’s wort interact with warfarin, a blood thinner. Hawthorn berry, kyushin, licorice, plantain, uzara root, ginseng, and St. John’s wort interact with digoxin, a common heart medication. Fish oils affect platelet aggregation and vitamin E affects platelet function.
Poor Odor Identification and Alzheimer’s

Predicting who will develop Alzheimer’s disease might be possible with a simple odor identification test, according to a study published in the September 2000 issue of the American Journal of Psychiatry by Dr. D.P. Devanand, professor of clinical psychiatry, and his colleagues at the New York State Psychiatric Institute’s Memory Disorders Center. Ninety men and women who had minor memory problems and other mild cognitive impairments participated in a 10- to 15-minute “scratch and sniff” test.

The participants, whose mean age was 67, were asked to distinguish 40 distinct smells, such as menthol, peanuts, and soap, from four alternatives given.

None of the 30 individuals who scored well on the test developed Alzheimer’s during the 20-month follow-up period. However, 19 of the 47 people with mild cognitive impairment who had difficulty identifying the smells and odors went on to develop the disease. Of those 19, 16 reported they had a good sense of smell. These findings suggest that the inability to recognize smells when combined with a lack of awareness that olfactory senses are impaired may be used as a predictor of Alzheimer’s disease.

Language Production Tasks Can Shift after Brain Damage

Rather than being completely “hard wired,” structures on one side of the brain can take over certain language functions normally achieved by a damaged region on the opposite side, report P&S researchers. The study, published in the September 2000 issue of Neuropsychologia, may provide insights into the brain’s compensatory responses to injury.

The brain is not a homogeneous structure. Various brain functions are each performed by distinct areas, so damage to a brain region can produce a specific and lasting functional difficulty in perception, thinking, or movement. Researchers report, however, that in the brains of three patients with chronic arteriovenous malformations in the left frontal lobe, brain functions involved in speech production were successfully “relocated.”

AVMs are chronic conditions thought to begin developing in utero and may begin causing brain problems, as evidenced by learning disabilities, in childhood. As adults, many AVM patients are asymptomatic and without noticeable deficits such as understanding language and producing speech, suggesting that their brains may have successfully adapted to any damage caused by the AVM.

“An AVM is a tangle of blood vessels in the brain. There’s an abnormal connection between artery and vein. Rather than passing smoothly through fine capillaries, blood rushes through the AVM, often at the expense of blood flow to the surrounding tissue,” says Dr. Ronald M. Lazar, associate professor of clinical neuropsychology and director of Columbia’s Cerebral Localization Laboratory.
Elderly Who ‘Eat and Run’ May Risk Fainting

For the elderly, eating meals and standing both can cause a drop in blood pressure that, especially when combined, may cause falls or even fainting.

“The reality is that since older people eat and stand up three times a day, this may be the most common reason that older people pass out,” says Dr. Mathew Maurer, instructor of medicine at P&S. Dr. Maurer and others reported in the Oct. 3, 2000, issue of the Annals of Internal Medicine that 22 percent of the functionally independent elderly people tested showed the effects of hypotension after both eating a meal and becoming upright.

Orthostatic hypotension, or a drop in blood pressure upon standing, is associated with a tendency to faint or fall in the elderly. “We know that older people are much more susceptible to hypotension,” says Dr. Maurer. Previous research also demonstrated that blood pressure also can drop in a seated elderly person after a meal. “The effect of eating on blood pressure has been seen almost exclusively in older people.”

It was unknown, however, whether this post-meal drop in pressure magnifies the effect of suddenly rising or adds to it. The researchers tested this idea by measuring blood pressure in elderly, non-disabled subjects who were strapped to a table that tilted upright, either before or 30 minutes after a carbohydrate-rich warm meal.

“We’ve just shown that the two effects are additive, but not synergistic,” says Dr. Maurer. When combined, the effects produced fainting in 22 percent of the participants in the study.

New Evidence of Link Between Common Infection, Stroke

In a study published in the July 2000 issue of the journal Stroke, Dr. Mitchell S.V. Elkind found that people infected with Chlamydia pneumoniae were four-and-a-half times more likely to have suffered a first ischemic stroke than their counterparts who had not been exposed to the bacterium. The association was consistent in people of all ages and ethnic groups studied and in both men and women.

C. pneumoniae infects the respiratory tract and also has been found in the blood vessel walls of people with heart disease. The infection is common and often mild. “Almost everyone gets it over the course of their life, perhaps two or three times,” says Dr. Elkind, assistant professor of neurology. “It may feel just like a cold.”

Dr. Elkind and his colleagues investigated 89 stroke cases selected from the Northern Manhattan Stroke Study and 89 matched controls. They checked for C. pneumoniae infection with blood tests for antibodies to the bacterium. They tested for immunoglobulin A antibodies, which last in the blood for several days after C. pneumoniae exposure; immunoglobulin G antibodies to the bacterium, which stay in the body for several years; and immunoglobulin M antibodies. The researchers used microimmunofluorescence to measure the levels of these antibodies.

The team found that the shorter-lived IgA antibodies were strongly associated with the risk of having a first stroke. Having the IgG antibodies also increased stroke risk, but less severely than the IgA antibodies. A person with the IgG antibodies in his or her blood was about two and a half times as likely to have a stroke. None of the patients had elevated levels of IgM antibodies.
The last time a Nobel Prize was earned by an active faculty member at P&S, Dwight Eisenhower was running against Adlai Stevenson in his bid for re-election as president, Velcro had just been perfected, Grace Kelly had married Monaco’s Prince Rainier, and Americans were watching “I Love Lucy” on TV and listening to the music of Elvis Presley, the Platters, and Bill Haley and the Comets on the radio.

The year was 1956, and Dickinson
Richards and André Cournand were already in their 60s and had been long-time P&S faculty members by the time they shared the Nobel Prize in Medicine with a West German physician.

In 2000, the Nobel committee found its way back to West 168th Street when it awarded the Nobel Prize in Medicine to 70-year-old Eric Kandel, a P&S faculty member since 1974 and University Professor—Columbia's highest faculty rank—since 1983. (Dr. Kandel turned 71 in November.) The Nobel, shared with Swedish researcher Arvid Carlsson and Rockefeller University's Paul Greengard, recognizes the three researchers for discoveries crucial to the understanding of the normal signaling function of the brain and how disturbances in signal transduction can give rise to neurological and psychiatric diseases. Discoveries by the three researchers have resulted in the development of new drugs to treat these diseases.

Eric Kandel, a senior investigator at the Howard Hughes Medical Institute at P&S, is a member of both the National Academy of Science and American Philosophical Society and a winner of the National Medal of Science. His seminal work with the sea slug Aplysia, a creature with relatively few nerve cells that are very large, allowed him to delineate a behavioral circuitry that could be modified by learning. In this neural circuitry, Eric Kandel demonstrated fundamental ways in which the connections between nerve cells are altered as a result of learning and how those alterations persist as memory. The work has been essential not only for understanding the basic processes of learning and memory, but also for highlighting many of the cellular processes that are targets of drugs that are potentially useful for improving memory.

Eric Kandel’s research has been pivotal in relating three psychologically defined forms of learning—habituation, sensitization, and classical conditioning—to subcellular processes and intercellular signaling. In his studies, he found that simple behaviors could be accounted for by distinctive sets of nerve cells connected in invariant circuits and that learning produces changes in behavior not by altering basic circuitry, but by adjusting the strength of particular connections between nerve cells. Dr. Kandel’s lab also defined sets of genes and proteins that stabilize synaptic connections and trigger growth of new ones. More recently, the Kandel lab extended this approach from simple forms of memory in the Aplysia to more complex forms of spatial learning in mammals.

In response to calls for an integrated approach to understanding the biological basis of behavior, Columbia established the Center for Neurobiology and Behavior, with Dr. Kandel as its director, in 1974. The center, with faculty from the basic science departments of the medical school as well as neurology and psychiatry, applies research in the various disciplines to understanding how the brain develops and functions. “This is a marvelous and exciting moment for Eric Kandel and for Columbia University” said Dr. David Hirsh, interim dean for research at P&S, upon hearing the news of Dr. Kandel’s Nobel Prize. “Dr. Kandel is a superb human being whose lifelong journey to understand the molecular basis of memory is one of the finest examples of what can result when true scholarship and dedication are combined with scientific brilliance.”

Dr. Kandel traveled to Stockholm in December to accept the prize.

Eric Kandel was born in Vienna, Austria, in 1929 and emigrated from the Nazi-occupied country to the United States with his family in 1939. Educated at Harvard College and New York University School of Medicine, he began his research career at the National Institute of Mental Health, in Wade Marshall’s lab, where he studied the hippocampus, the region of the brain critically involved in memory. After completing his residency in clinical psychiatry, Dr. Kandel began work as a staff psychiatrist at Massachusetts Mental Health Center in Boston while continuing research and teaching at Harvard.

From 1962 to 1963, Dr. Kandel spent a year in Paris as a postdoc fellow with Ladislav Tauc at the Institute Marey, where he began work on Aplysia. In 1965, he was appointed associate professor in physiology and psychiatry at NYU and was promoted to full professor in 1968. He joined Columbia in 1974 as professor of physiology and of psychiatry and was named University Professor in 1983 and a Hughes Senior Investigator in 1984.
Eric Kandel, Nobelist

By Mimi Zucker

Dr. Eric Kandel’s 2000 Nobel Prize is formal recognition of what everyone already knows: He has fundamentally shaped the field of cellular neuroscience. His findings in Aplysia
californica, the slimy, shapeless native-Californian sea slug, elaborate the biochemical changes that occur during sensitization, a process in which the creature learns to strengthen its reaction to a previously benign stimulus. Depending on how many times the benign or "unconditioned" stimulus is paired with a noxious one, the Aplysia's remembrance may last minutes (short-term memory) or days to weeks (long-term memory). Dr. Kandel has shown that both short- and long-term memory have biochemical correlates at the level of individual synapses, the communicatory connections between neurons.

"I went to medical school to become a psychoanalyst. I focused on learning and memory because I thought they were essential in knowing about how the mind works and psychoanalytic therapy brought about changes in people's behavior," says Dr. Kandel. "While in medical school I thought I ought to know more about the brain." With that goal, he headed to the NIH after medical school. At the beginning of the 20th century, the great Spanish anatomist Santiago Ramon y Cajal theorized that memory involved changes in the strength of connections between individual nerve cells, but there was no evidence to support this idea. "I began by going to the hippocampus, that part of the mammalian brain concerned with the storage of complex memory. Alden Spencer and I used to stay up late into the night doing experiments together and during those long nights we discussed problems hindering the research and realized that we needed a simplified system." Although much of Dr. Kandel's research now focuses on learning in mammals, he says, "At the beginning, Aplysia was a very clear choice for me.

"Angelique Arvanitaki and Ladislav Tauc had done some physiology in the animal already, but no one had thought about behavior. I wanted to study learning and memory, and Aplysia turned out to be an excellent preparation for this. Aplysia has the largest nerve cells in the animal kingdom." The cell body of an Aplysia neuron is gigantic compared with the pyramidal cells of the mammalian hippocampus. To appreciate the relative difficulty of penetrating a pyramidal cell rather than an Aplysia cell with a glass micropipette like those typically used by researchers to record a cell's electrical activity without damaging it, imagine how much harder it might be to stab a pea than an orange straight on with a toothpick.

Dr. Kandel notes the irony of early reactions to his adoption of the lowly mollusk for studies of the cellular basis of learning and memory, "At the time, some said that after a good start I was wasting my career by working on an invertebrate." In 1990, new techniques allowed Dr. Kandel to revisit the mammalian central nervous system. "By the 1980s, whole-cell recording was possible in mammalian cells," Dr. Kandel says. "Slice preparations of mammalian brain also eliminated the pulsations and allowed recording from single cells." These slabs of brain tissue containing the structures under study could be sustained in a dish, enabling a single neuron's electrical activity to be recorded stably.
under various drug and ion conditions. “The vast amount of work in mouse genetics also offered an advantage to working in the mouse.”

Given the wealth of techniques now available to neuroscientists, would Dr. Kandel again choose to work on Aplysia if he were new to research today? Dr. Kandel pauses to consider the question. “Aplysia still offers many fine advantages. For example, in recent years we have studied how a neuron with a thousand synaptic connections can specifically change the long-term strength of some synaptic connections but not others. For this purpose Kelsey Martin in my lab developed an extremely informative culture system from Aplysia neuron that has not been matched in another system.

“I do, however, feel that scientists have to be opportunistic. It’s definitely not my obligation to keep working on Aplysia out of nostalgia. But with this new culture system the problem of synapse specificity has been addressed in Aplysia in a way that is not yet possible in other systems.” He cites his approach of growing isolated pairs of Aplysia neurons in vitro to investigate their interactions one-on-one. “The fact is, there continue to be certain problems that can best be addressed with Aplysia that can’t be done in mammals. For instance, isolated nerve cells of Aplysia are much better behaved than mammalian nerve cells in culture. Mammalian cells have the tendency to form ‘autapses’—they will synapse back on themselves, complicating the circuitry.” The remarkable size of Aplysia neurons also enables molecular procedures that would be nearly impossible in mammalian cells, which are much smaller. (To identify genes that might be involved in changes in protein synthesis at the synapse, for instance, Dr. Kandel and colleagues recently were able to compare a cDNA library of genes expressed in sensory processes of neurons with one from the cell body.)

More than four decades after beginning his research career, Dr. Kandel is a leader in the field of neural plasticity. The drive to relate the cell biology of learning to medicine, coupled with advances in molecular techniques, compelled him to expand research efforts to mammalian models of memory disorders.

Working with former postdoctoral researcher Dr. Dusan Bartsch, Dr. Kandel became interested in deficiencies of memory storage. The two used genetic analysis to look at a number of neurological problems that may stem from genetic defects. “In infants with Down’s syndrome, mental function is not that far off from normal,” Dr. Kandel notes. “Some pediatric neurologists believe that some type of further toxic buildup occurs postnatally, causing cumulative damage to the brain. Theoretically, if you could ascribe this to overexpression of a particular enzyme, perhaps a kinase, you could reduce deficits by blocking that enzyme. Dusan has, in fact, seen that some of the genes that are overexpressed in Down’s syndrome can by themselves cause cognitive deficits that build up with time.”

One of these genes is called minibrain kinase. “In the mouse brain, Dusan has been able to turn this gene on and off to temporarily overexpress this kinase in the forebrain of the animal. The mouse that overexpresses this gene has...
learning deficits, as well as physiological deficits in the hippocampus,” says Dr. Kandel. The mouse’s difficulty in learning argues that mini-brain kinase overexpression may explain some of the cognitive problems of Down’s syndrome. “These effects are reversible. If you could somehow reduce the activity of this enzyme that’s overexpressed in Down’s syndrome patients, you might be able to improve their function.”

Dr. Kandel’s reputation for laying the foundations of the cellular basis of learning has attracted a large and active group of researchers to his lab. It also helps that he tends to be open to taking on scientists with backgrounds outside of neurobiology, such as molecular biologists with no background in neuroscience. He makes himself available in his lab, freely talking with researchers about their projects.

Dr. Kandel is quick to acknowledge that his success in finding some of the key components of the cellular basis of learning did not occur in an intellectual vacuum. “I think the important thing to emphasize is how great the Columbia medical school community is as a research community,” Dr. Kandel says. He recognizes that working at Columbia has put expertise from a variety of biomedical fields within his reach.

“The proximity of the buildings that comprise the medical center has allowed me to interact with other researchers,” says Dr. Kandel. “This greatly influenced my research. For instance, my efforts to move into molecular biology were greatly helped by Richard Axel, my efforts in morphology by Craig Bailey, in biochemistry by James Schwartz, and in biophysics by Steven Siegelbaum.” His appreciation of the Columbia research environment extends beyond cellular neuroscience, though. “I think mine is probably just the first in a series of recognitions in neuroscience,” Dr. Kandel says in pondering the caliber of other research disciplines at P&S. “Indeed, we’re very strong not just in neuroscience, but also in clinical psychiatry and neurology.

“When I started here, we very rapidly established a strength in cellular neurobiology. We knew that the merger of molecular biology and neurobiology had the potential for being strong,” says Dr. Kandel, “and with the leadership of Richard Axel and James Schwartz, we soon developed exceptional strength in molecular neurobiology and biochemistry that enabled us to be eligible for the Hughes Institute. That allowed us to recruit Tom Jessell, Gary Struhl, and Steven Siegelbaum.”

Dr. Kandel still sees room for expanding neuroscience research at Columbia into new disciplines. The burgeoning field of cognitive neuroscience offers a bridge from cellular neurobiology and neurophysiology to perception and thought, potentially bringing neuroscience research at Columbia a bit closer to addressing one of Dr. Kandel’s first interests: how psychotherapy works. “When we recognized there was a problem in cognitive neuroscience, we went about organizing the Mind-Brain Institute. From the Keck and Mahoney foundations, we got about $6 million,” says Dr. Kandel.

Although pleased about developments toward establishing a center for cognitive neuroscience, Dr. Kandel remains frustrated by infrastructural obstacles to interaction between disciplines. In
Dr. Kandel’s ideal world, the Center for Neurobiology and Behavior, the Center for Mind-Brain Studies, aspects of basic science in the neurology department, the psychiatry department, and possibly the Sergievsky Center under the leadership of Richard Mayeux would be housed in the same building. Neuroscience has much to offer the field of psychiatry and neurology, Dr. Kandel says. “I’d like to solidify the interchange between basic research and clinical science. Neuroscience should form the fundamental basis for psychiatry. Perhaps psychiatrists in training should spend their initial year of study with neurologists.”

Aside from Dr. Kandel’s contributions to cellular neurobiology, one accomplishment many former students may remember best is his authorship of “Principles of Neural Science” with other Columbia faculty. Dr. Kandel explains the impetus for putting together the prototype for the comprehensive text on cellular neurobiology, neurology, and neuroanatomy: “I’m not a good note taker. I’ve always just enjoyed sitting back and listening to a lecture. When I came here to develop the neuroscience course, I thought I’d make it as student-friendly as possible, so I gave out a syllabus. Later, we added figures.” With the look of a proud parent displaying a child’s scrapbook, Dr. Kandel opens an early version of the syllabus used in teaching neuroscience at P&S in the mid-70s. “As we added on more and more, we asked ourselves, is it a syllabus or is it a textbook?” He and fellow professor James Schwartz published “Principles of Neural Science” in 1981.

“With the second edition, other people began to see our textbook as the definitive book in the field,” he recalls, picking up the hefty tome. “I’ve been so pleased with how well this book has held up over the years. It continues to be quite useful and popular around the world.” (Dr. Jessell joined Drs. Kandel and Schwartz in authoring the third edition, published in 1991, and the fourth edition, published in 2000.)

“I’ve gotten enormous personal satisfaction from the text, as well as teaching,” says Dr. Kandel.

“Teaching medical students is very rewarding. I like the medical students at P&S a great deal and I find teaching to be a good way of getting one’s head clear about major scientific issues. It also gives you a perspective about how your research fits in with the rest of science.”

Communicating this perspective is a task Dr. Kandel appears to take seriously; as author of several commentaries on neurobiology’s value to psychiatry, he is an ardent advocate of applying the fruits of molecular and cellular neuroscience to clinical research and practice. “Ultimately, it should be possible to relate molecular events and specific changes within neuronal circuits to mental processes such as perception, memory, thought, and possibly consciousness itself,” Dr. Kandel and a colleague wrote in a recent review. In the meantime, work in the Kandel lab steadily yields keys to understanding the biology of learning, one molecule at a time.
In many ways, Yangchen Dolkar and Namgyal Tsewang are typical of first-year medical students all over the world. Having completed graduate degrees in zoology at the University of Delhi (Ms. Dolkar) and the University of Mysore (Ms. Tsewang), they passed the usual preparatory science courses required for the study of medicine. Like their classmates in the M.D. Program in International Health and Medicine in which Columbia University’s Health Sciences Division collaborates with Israel’s Ben Gurion University, the young women are interested in issues of international health and disease prevention for diverse populations.

What distinguishes the two students from other classmates in the program is that they began their medical studies with the blessing of the Dalai Lama.

As members of the Tibetan community in exile in Dharamsala, India, Ms. Tsewang and Ms. Dolkar have a special awareness of the health concerns of refugee groups, a subject covered in the curriculum of the Columbia-Ben Gurion program.

The program opened in 1997 when Columbia University joined forces with Ben Gurion University to develop a new kind of M.D. program that would encompass such subjects as humanitarian emergencies and relief medicine, refugee health, and preventive medicine for diverse populations. The American-style program is taught in English at Ben Gurion University’s medical school in Beer Sheva, Israel. Columbia faculty participate in the admissions process and curriculum development and serve as visiting lecturers. The M.D. degree is conferred by Ben Gurion University.

The innovative collaboration between Ben Gurion University and Columbia includes elective exchanges for fourth-year medical students and was recently cited in the New England Journal of Medicine’s Sounding Board as an example of a “sophisticated new generation of programs in other countries” that help expand medical education. The curriculum emphasizes the knowledge, skills, and attitudes needed to address increasingly challenging issues in international health and medicine. Beyond the basic medical sciences and clinical rotations taught in U.S. medical schools, students in the program also learn about cross-cultural medicine, health-care delivery, health-care economics, travel and disaster medicine, infectious diseases, nutrition and preventive medicine, and environmental health.

The program is directed by Dr. Richard J. Deckelbaum, director of Columbia’s Institute of Human Nutrition at P&S, and his counterpart at Ben Gurion University Medical School, Dr. Carmi Z. Margolis. The admissions process is conducted at the program’s Columbia University office by a committee of faculty representing both universities.

Tibetans have a rich history of traditional medicine, and medical education has long been a high priority for the exile community, which is dispersed throughout India, Nepal, and several countries in the West. The unique M.D. program came to the attention of the Tibetan government, and Dr. Deckelbaum met with the Dalai Lama to discuss health and nutritional concerns of the Tibetan community when he traveled to Dharamsala, India, to interview Tibetan applicants in May 2000. Ms. Tsewang and Ms. Dolkar received the blessing and encouragement of the Tibetan leader before embarking on their four-year course of study. Both students are on full scholarship from Ben Gurion University and have pledged to serve their community after obtaining their M.D. degrees.

Now in its third year, the program has 106 students from North and South America, Russia, Japan, the United Kingdom, India, and Ethiopia. In addition to Ms. Tsewang and Ms. Dolkar, the first-year class that began medical studies in August includes a former Peace Corps volunteer from Mali and students from Rwanda, Australia, the United States, and Canada.
The Spectacle of Medicine

But to look in order to know, to show in order to teach, is not this a tacit form of violence, all the more abusive for its silence, upon a sick body that demands to be comforted, not displayed. Can pain be spectacle?

- Michel Foucault, “The Birth of the Clinic”
Doctors, and I am no exception, love a good zebra. Not the ones with black stripes that roam the African bush. I’m talking about patients with rare, exotic diseases like PNH. We crowd around to see them, touch them, photograph them. We put them on display at conferences. We write their stories in journals. We do all this, I suspect, because they reawaken the spirit that first pushed us into medicine: a fascination with the human body, its incredible achievements and its terrifying failings.

In three quick months, I have not only relinquished my place in the safari of medicine but have become its object, its hunted. I’ve metamorphosed into a zebra on two unsettling occasions: first when my eye clot was discovered and second when the diagnosis of PNH was made. The fact is, I’m a lot more comfortable in my primary role as physician.

Medicine for me has always been a window onto the neglected world of the human body. Ordinarily, people don’t take much note of their bodies. We work, we play, we sex—all of which ultimately depend on an accommodating body—but we do so unreflectively. A runner runs the marathon, he doesn’t think about how the heart must pump or the cells must break down fat and sugar to fuel that furiously beating organ. Kasparov moves his pawn to bishop three, thinking two steps ahead and three steps back, but rarely about what makes all this thinking possible. Then again, if we were constantly thinking about such things, we wouldn’t be able to run the race or make the move.

When the machine breaks down, however, and the body becomes ill, people in general and physicians in particular are forced to take a clos-
The heart of a man after a major heart attack doesn’t work well anymore. You can see it in his legs, hear it in his lungs—fluid is accumulating in places where it shouldn’t because the pump is failing. The man can hardly walk up a flight of stairs before losing his breath; the gossamer-like membrane of the lungs becomes clunky, unable to expand, with excess fluid. A woman with rheumatoid arthritis inevitably requires a knee replacement. The cartilage around the knee has been mutilated by her own immune system. For some reason, the body is attacking itself. There is a breach in its sacred code—it’s no longer capable of distinguishing self from foe. A patient with AIDS has the opposite problem. A virus has caused a weakening of his immune system. The patient is no longer able to subdue minor organisms that a normal person routinely shrugs off. He gets white stuff called thrush on his tongue and a flaking of the face and scalp called seborrheic dermatitis.

Medicine, it could be said, operates for the most part in the reverse order. We first encounter and learn about the body in its defective or abnormal states. Disease is the key to knowledge. It provides important clues about how the body works in normal circumstances. We understand the heart better because we have seen heart-failure patients, the immune system because we have treated autoimmune diseases and AIDS. And this is doubly true for the zebras of medicine. Rare conditions like PNH not only add spice to our professional lives but are typically more illuminating than their more common counterparts.

A year before my own diagnosis, I presented a paper at a dermatology conference about a patient named José who had developed blisters in his eyes, mouth, and throat. Over time, the blisters led to scarring and José’s eyesight and breathing became compromised. I sent samples of tissue and blood to several researchers who studied cicatricial pemphigoid, as the disease category is known. They concluded that the patient didn’t fit into the textbooks. He had antibodies to a protein no one ever heard of or knew existed. The protein (now called epiligrin), as it turns out, is essential to the integrity of the basement membrane of the skin. Without epiligrin, the skin doesn’t hold together; it separates and forms blisters. We know this because some unlucky person contracted a “new” or hitherto unrecognized disease.

Illness opens a window. It allows us to see what takes place beneath the body’s surface. From studies in both the clinic and the lab, physicians have begun to understand much of
what they observe. Still a great deal remains mysterious, untapped, which only enhances our curiosity. The journey—encountering unusual cases, conferring with colleagues, engaging in research—is often as exciting as the destination.

Before I became sick, this is what the fascination of medicine meant to me. Since then, I confess, that meaning has broadened. Along with the shift in perspective, my story has been turned on its head. Like José, I am now a patient. I am the interesting case. What’s going on in my body is fascinating. Illness is happening to me, not someone else in the next room.

The comfort of remove has vanished. I don’t mean to suggest that physicians are entirely ignorant of how it feels to be a patient. After all, we deal with real people who are sick, who are dying, day after day. Pain, shame, and fear are right before our eyes. We must have an inkling. Perhaps.

José and I were the same age when we first met. He was disfigured by the blisters and in pain. Chemotherapy wasn’t working. I felt awful for him and wanted to help in any way possible. But this is more sympathy than empathy, where there is an exchange of seats, of points of view. I’m not making value judgments. The distance is important. If a doctor tried to put himself in every patient he saw, he’d be a lunatic by nightfall.

There is great sympathy, small empathy in medicine. At the same time, there’s another emotion at play that is even more troubling. In the room with José, I felt terrible. Outside the room, I was excited, ecstatic. I had caught my first zebra. I wanted to show him to my colleagues, present him at a conference, write a paper about him. It was the case of the century.

I did not and do not miss the irony here. I was aware of the contradictory nature of my feelings. I felt guilty—being fascinated while José couldn’t breathe. It was horrible, unfair. And it didn’t help that knowledge was being gained, that studies on José’s blood would lead to the identification of a new subtype of cicatricial pemphigoid, that this new subtype might respond differently to medication, and that, ultimately, José might make it easier for patients after him.

Now I was in José’s chair. First at the ophthalmologist in early September and later that month at Sloan-Kettering. I sat meekly by as the doctors shuffled in and out, poking and prodding, muttering under their breaths. I knew what they were thinking, saw it in their eyes. I wanted to scream: Who the hell do you think you’re kidding with this pity routine? You’ll be chatting about my case at cocktail parties for the next decade.
next decade. Yes, I’m a zebra. So what? You don’t have to dance in my face.

We doctors have an inkling. We’re also aware that there’s something wrong about our divided and divisive feelings. But medicine has always been a spectacle at the expense of sick people. For the person in the chair, the body everybody is gawking at, the source of interest, it is downright degrading. This is the other side—you might call it a subplot—of the fascination story. And like the main plot, this side is also taught in medical school. With much less fanfare, of course, but surely not to be missed.

Any medical student who rotates through neurology will tell you about Grand Rounds. Held in a large auditorium or lecture hall, it features the patient du jour, wheeled out (neurology patients usually don’t walk) to center stage after everyone has taken their seats. The physician presenting the case stands at a podium to the patient’s right. The show begins.

After a brief history, the presenter will examine the patient. The audience is encouraged to interrupt at any time. Mr. Jones, can you lift your leg for us? Not really. (Of course he can’t, the man is paralyzed.) Can you wiggle your toe? (If there were any movement, you’d need a magnifying glass to detect it.) That’s better. Now touch your finger to your nose. (The finger jerks left, jerks right, then pirouettes into the left eye.) Obvious cerebellar dysfunction. Let us continue...

Popcorn, anyone? Applause from the audience? Now tell me—is this so different from parading the Elephant Man around at the circus? Barnum & Bailey were always on the lookout for an exotic disease. Remember the Wolf Man (he had porphyria), Alligator Man (ichthyosis), the Siamese twins, and the rest of the infamous zebras at the circus. On par with the clowns for entertainment value.

I’m exaggerating a little. There is a difference. At Grand Rounds, a patient is on display for a group of physicians, not the general public. The purpose is to instruct, not entertain. And in many cases, the patient benefits from the exchange of opinions.

But it’s still a spectacle. A person who has already been stripped of citizenship in the normal, healthy world, is made to bare himself and his infirmity, to parade it in front of a group of strangers, to play the role of freak, and, in many cases, get nothing out of it. Of course, there is always the glimmer of hope that someone in the audience will have a brainstorm, a flash of medical insight. But the majority of neurology patients have conditions like multiple sclerosis and Lou Gehrig’s disease, which we currently can’t do much about. We wheel them around, talk about the case for hours, gawk, then watch them languish and die.

Unfortunately, the spectacle is necessary to medicine. There is no other way to teach and disseminate information as effectively. Surely, though, we can make it more dignified for patients. At the dermatology conferences at Downstate, patients wait in an examining room. Only one or two doctors are allowed to enter at a time. The relative privacy makes the experience less degrading. Yet even at Downstate, the spectacle is not free. There’s a price to pay and the patient is footing the bill. As long as we understand that.

Resuming my role as doctor, I try to remember this. But fresh as my experience with patienthood is, I forget. Last week, a patient came to the office with numerous lumps under his skin and on the surface of his eyes that had developed over a period of three weeks. I’d never seen anything so dramatic. I rushed for my camera and shot a roll of film. I had him come back the next day when my father was in. He shouldn’t miss this impressive case.

It turned out my patient had leukemia, an extremely severe form. He will most likely need a bone marrow transplant. I am torn by conflicting feelings. By sympathy and fascination.
Before medical school, the idea of “Gross Anatomy” for some students conjured macabre images of late nights spent in the anatomy lab and lingering odors of formaldehyde. However, when we all arrived at P&S in 1999 to begin our first year, we immediately discovered that formaldehyde had been replaced with phenol and that the experience in lab was more solemn and full of wonderment than perhaps we had expected. During the first lecture, Dr. Ernest April explained that anatomy at P&S concentrates on clinically relevant material; it is a course in clinical anatomy as opposed to gross anatomy. For the first lab, we were given time to adjust to the environment. We did not do any dissection. In fact, the only contact we had with the cadaver was to wrap the head and hands to help preserve the body. In addition, Father Daniel Morrissey, a chaplain who provides counsel to students, attended our first lab.

As the course progressed, we came to realize that the most effective means of learning anatomy was a three-pronged approach: careful dissection in lab, attentiveness in lecture, and time spent poring over textbooks before and after lab. Each learning method was vital but not independently sufficient for understanding anatomy.

The process usually begins the night before class. A student might open Dr. April’s textbook, “Clinical Anatomy.” Cross-referencing Dr. April’s list of key points, one then slowly works through the relevant chapters for the next day’s dissection. To correlate the text with a visual image, we use the recommended Dr. Netter’s “Atlas of Human Anatomy,” or Rohen’s “Color Atlas of Anatomy” (a text of actual cadaver photography). Despite the abundance of texts, this is not exactly an ideal system. The student spends a good portion of time flipping through the atlas trying to find the appropriate pictures. Some students also find that after reading, their understanding doesn’t always correlate precisely with reality: The mental picture of a structure may not be exactly what the structure truly looks like.

The next day’s lecture sometimes resolves these misunderstandings. Lecturers spend 50 minutes to an hour reviewing the material for that day. They pass a pointer over a set of slides and highlight important structures. Most of the class time is used discussing essential anatomical concepts, functions, and relations. By the time we leave the classroom, we are prepared to move on to the dissection.

When we finally enter lab, the dissection becomes a vindication of our textbook study and classroom introduction. With a good dissection, we see the structures described in the reading. In addition, dis-
secting and examining helps students improve their 3-D understanding of anatomical structures, mainly from touching and holding the actual structure. 3-D relationships, like the one among the liver, the gall bladder, and the cystic duct, are made clearer as we probe and cut.

However, January brought an incredible advancement in the teaching of anatomy at P&S. Dr. Richard Ambron gave a lecture on the orbit using a prototype software program that he created in collaboration with Dr. Ahmet Sinav and Eva Soliz. The program was also available to students on the web. An extremely useful tool, it displays a 3-D structure and allows a great degree of interactivity with the images. The program allows the user to "virtually dissect" or reconstruct the region under study simply by using mouse clicks. With this program, Dr. Sinav and Ms. Soliz have endowed the student with the ability to either add or remove each individual muscle, nerve, and vessel, which rapidly gives a complete and precise 3-D picture of the structure and its anatomical context. The software also features an excellent labeling procedure that highlights each individual structure with different colors as the mouse passes over it and, once a structure is clicked, the program provides the proper name. This gives the student a means of self-testing, which further solidifies anatomical knowledge.

This new program is exciting for both students and faculty. Because of the labeling and 3-D capabilities, the orbit prototype is a vast improvement over the traditional slide lecture, in terms of both effectiveness and time-management. A great deal of complex information can be efficiently conveyed without having to describe it verbally, which can often cause confusion to the student if not precisely worded. This saves time and mental anguish for both teacher and student.

In Dr. Ambron's words, the prototype "is an important adjunct to the traditional slide lecture because it explicitly shows the anatomical relationships among all of the structures." In addition to the use of the prototype as a multimedia presentation tool, the orbit program also aids students in their individual studies. 3-D computer imaging will supplement or even replace the traditional atlas of human anatomy. Because Columbia faculty are developing these computer resources, our class material correlates directly with the images on the computer. We don't have to flip through an atlas to find the right picture because it is provided on the web. (The images already available for another first-year course, "Neuroanatomy," have become integral to that course.)

While the orbit prototype is exciting, the potential value for the complete project is even more so. In the near future, another module will be created for the bones of the skull. Each bone will be captured separately so that they can be assembled into a completed skull. Dr. Ambron envisions the orbit program to include a more detailed presentation of the nerves and their function. "When completed, the orbit program will contain . . . a section on the CNS control of the eye movements; the latter being prepared in collaboration with Dr. [Jack] Martin and Ms. Soliz. Another module will include clinical correlations, for example, the effects of lesions on eye movements. All of the sections will be annotated with either voice overs or text." Dr. Sinav, the illustrator for this project, is also excited. "This kind of project has been my professional dream since I was a fifth-year medical student in Turkey. We are at the beginning of an enormous project. We are working on the human body part by part to create a resource that is unique."

For all its merits, anatomical software will likely never replace an actual dissection. The process of conducting a tangible human dissection is a transformative experience and an essential one for the student. Yet anatomical software is an extremely useful study aid and could make the time spent in lab more effective, not only by preparing a student's conceptual understanding of complex structures before lab. According to Dr. Ambron, plans exist to put computers at each dissection table so that students will have access to videos, CT scans, and MRIs.

The prototype software lecture was met with a high degree of satisfaction from the student body; the general consensus was that the program streamlined the process of lecturing and would be an invaluable study aid. We believe that a complete program, incorporating all of the body's anatomical systems and complexities, would provide an improved educational experience for medical students.

The authors are now second-year students at P&S.
Dr. Gerald D. Fischbach, director of the National Institute of Neurological Disorders and Stroke at the NIH, has been named Columbia University’s vice president for health and biomedical sciences, dean of the Faculty of Health Sciences, and dean of the Faculty of Medicine. He also will be the Harold and Margaret Hatch Professor. He will join Columbia in February.

Dr. Fischbach was the Nathan Marsh Pusey Professor of Neurobiology and chairman of neurobiology at Harvard and Massachusetts General Hospital before assuming his NIH position in 1998.

Dr. Fischbach succeeds Dr. Herbert Pardes, who became president and CEO of New York-Presbyterian Hospital in January 2000.

“This is an extraordinary time in biomedical and health sciences,” says Dr. Fischbach. “Advances at all levels of analysis, ranging from...”
molecules to behavior, have begun to revolutionize the practice of medicine. Investigators throughout Columbia University have contributed enormously to this revolution. It is a privilege to join this distinguished faculty and help shape its course in the coming years."

Dr. Fischbach received his M.D. degree in 1965 from Cornell and interned at the University of Washington. He began his research career at the NIH. At Harvard, he was associate professor of pharmacology from 1973 to 1978 and professor until 1981. From 1981 to 1990, Dr. Fischbach was the Edison Professor of Neurobiology and led the anatomy and neurobiology department at Washington University in St. Louis before returning to Harvard.

Dr. Fischbach, past president of the Society for Neuroscience, serves on several medical and scientific advisory boards. He is a member of the National Academy of Sciences, the American Academy of Arts and Sciences, and the Institute of Medicine and he is a fellow of the American Association for the Advancement of Science and a non-resident fellow of the Salk Institute.

Throughout his career, Dr. Fischbach has studied the formation and maintenance of synapses, the junctions between nerve cells and their targets through which information is transferred. He has been particularly interested in the neuromuscular junction, a synapse that is easily accessible to experimental manipulation. He pioneered the use of cultured neurons and muscle cells to characterize the biochemical, cellular, and electrophysiological mechanisms underlying development and function of the neuromuscular junction.

Beginning in the 1970s, Dr. Fischbach embarked on a search for molecules released by motor neurons that regulate the number of acetylcholine receptors on muscle cells. This work culminated in 1993 with the purification and cloning of a protein called ARIA (acetylcholine receptor-inducing activity) that stimulates synthesis of acetylcholine receptors by skeletal muscle cells. This molecule is now known to be a member of a family of trophic factors called neuregulins that are thought to be involved in a variety of important developmental processes in the nervous system. Because ARIA and other neuregulins act by binding to tyrosine kinase receptors on target cells, Dr. Fischbach’s work was key in demonstrating that synaptic development relies upon biochemical mechanisms that are broadly similar to those that underlie the action of nerve growth factor and other well-known trophic molecules. His current focus is on trophic factors that influence synaptic efficacy and nerve cell survival. Dr. Fischbach plans to have a small lab at Columbia.

Dr. Fischbach’s wife, Dr. Ruth Fischbach, will be professor of bioethics in psychiatry in the Center for the Study of Society & Medicine at P&S. She had been senior adviser for biomedical ethics in the NIH Office of Extramural Research.
NEW NAME (AND HOME) FOR PEDIATRICS

Babies & Children’s Hospital has become Morgan Stanley Dean Witter Children’s Hospital of New York at New York-Presbyterian Hospital. Ground was broken on a new building in November, when the new name was unveiled. The nine-story, 250,000-square-foot facility will rise on the site of a former parking lot adjacent to the existing Babies & Children’s Hospital at 165th and Broadway. The $120 million facility is expected to be completed in 2003.

More than 300 Morgan Stanley Dean Witter employees contributed $55 million-plus toward the construction. The existing building will be renovated for expanded outpatient services and research and diagnostic services.

Children’s Hospital of New York includes the pediatric service of New York Weill Cornell Medical Center of New York-Presbyterian. The hospital is Manhattan’s only children’s hospital. Babies Hospital, founded in 1887, moved to Columbia-Presbyterian Medical Center in 1929 and administratively consolidated with the former Presbyterian Hospital in 1943.
THOMAS JESSELL RECEIVES NEUROSCIENCE AWARD

Dr. Thomas M. Jessell, professor of biochemistry and molecular biophysics and a Howard Hughes investigator in the Center for Neurology and Behavior at P&S, received the 13th annual Bristol-Myers Squibb Award for Distinguished Achievement in Neuroscience Research in September.

Dr. Jessell, recognized for defining many of the key cellular and molecular mechanisms that control the development and functional organization of the spinal cord, is the third P&S researcher to receive the prize. Dr. Eric Kandel, University Professor, shared the award in 1991 for his pioneering work in developing the models of learning and memory. Dr. Richard Axel, also a University Professor, received the award for his groundbreaking work in outlining fundamental principles of how key cells involved in perception are organized in the brain.

Over the past 15 years, Dr. Jessell’s research has provided fundamental insights into the mechanisms by which neuronal circuits are assembled during the development of the spinal cord. He first showed that each of the motor neurons and interneurons in the spinal cord achieve their distinct identities and characteristic position through the actions of two classes of inductive signaling molecules, members of the Hedgehog and Bone Morphogenetic Protein families. He also showed that the Sonic hedgehog protein functions as a morphogen, an inductive signal that specifies different ventral neuronal cell types at distinct concentration thresholds. Dr. Jessell's research also identified many of the key genetic targets of Sonic hedgehog signaling that impose distinct identities on spinal cord neurons. His studies on the embryonic spinal cord established the existence of chemotactic factors that guide axons in the central nervous system and provided the basis for the subsequent identification of netrins as neuronal chemotactants.

His work may have a direct practical application in the design of novel therapies for degenerative diseases that affect motor neurons and also for ensuring the survival and function of motor neurons after traumatic injury to the spinal cord.

NEW HOWARD HUGHES INVESTIGATORS

Dr. Eric Gouaux, assistant professor of biochemistry and molecular biophysics, and Dr. Barry Honig, professor of biochemistry and molecular biophysics, are among 48 scientists who were selected in a national competition as the newest Howard Hughes Medical Institute investigators. The 353 HHMI investigators across the United States are based at 72 medical schools, universities, and research institutions.

Dr. Gouaux earned an A.B. in chemistry at Harvard where he carried out research in organic chemistry. He remained at Harvard to pursue research in X-ray crystallography and complete a Ph.D. and one year of postdoctoral training. He then worked at MIT during two years of additional postdoctoral training before moving to the University of Chicago. He joined Columbia in 1996 and focuses his studies on receptors of the nervous system. He will use HHMI support to study the relationships between structure and function of ligand-gated ion channels, molecules that are the electrical switches of nerve cells.

Dr. Honig graduated summa cum laude with a B.S. in chemistry from Polytechnic Institute of Brooklyn. He earned M.D. and M.A. degrees from Johns Hopkins and a Ph.D. from the University/Weizmann Institute of Science in Rehovot, Israel, with NSF graduate fellowships. He received postdoctoral training at Harvard as an NIH postdoctoral fellow and was a lecturer for Columbia's Department of Biological Sciences before holding professorships first at the Hebrew University in Jerusalem and then at the University of Illinois, Urbana. He returned to Columbia, where he has held his current position for 19 years.
The Institute of Human Nutrition at P&S will provide its expertise in nutrition education to the development of online course content for NutritionU.com. Courses will be designed to make practical and understandable nutrition information accessible to a broad audience, including but not limited to clients of registered dietitians and other health care professionals.

“NutritionU fills a void that physicians and other health care professionals need to help educate our patients and the public about the role they can play in enjoying a healthier lifestyle,” says Dr. Richard Deckelbaum, the Robert R. Williams Professor of Nutrition and director of the Institute of Human Nutrition. “As a physician, an advocate for improved public health care, and head of a leading nutrition institute, I have first-hand experience with the complexities and overwhelming number of choices that patients and consumers have in dealing with how best to understand a disease or condition and subsequently deciding how to best treat it from a nutrition point of view.”

NutritionU.com is a new online nutrition education network created by AMBI, a company that develops and markets proprietary nutrition products. The site will offer patients and consumers unique interactive courses designed to increase their knowledge of nutrition to improve or maintain their health. The company will start by offering clients of registered dietitians and other health care professionals the opportunity to learn more about their disease or condition. The nation’s more than 70,000 registered dietitians, diabetes educators, and other health care professionals see more than 2 million patients and clients annually for type 1 and type 2 diabetes, high blood pressure, high cholesterol, obesity, digestive and eating disorders, and other related problems. Many patients are referred by physicians to help them adhere to the diet and lifestyle modifications that are critical in disease management and prevention of worsening health conditions.

“Nutrition is a key lifestyle tool to improve health and reduce disease risk,” says Dr. Deckelbaum. “NutritionU provides an ideal way to empower individuals to take charge of their health in a proactive, economical, informative, and provocative way.”

Dr. Benjamin Chu was appointed the new senior associate dean for the Columbia affiliation with Harlem Hospital Center effective in July. Dr. Chu succeeds Dr. Edward Heathon, who held this position for 16 years.

Dr. Chu will be responsible for Columbia’s research and education programs at Harlem Hospital and for managing the university’s productivity-based contract with the New York City Health and Hospitals Corporation, which operates Harlem Hospital. He will oversee 200 Columbia faculty and other health care personnel who carry out clinical, teaching, and research programs at Harlem Hospital.

“We are very fortunate to have been able to recruit Dr. Chu to lead our effort at Harlem at the start of a new and challenging three-year contract with the New York City Health and Hospitals Corporation,” says Dr. Thomas Morris, interim dean for clinical and educational affairs. “He is very familiar with the public hospital system and deeply committed to the teaching, research, and service missions of Harlem Hospital.”

Benjamin Chu

Dr. Chu had been an associate professor of clinical medicine and associate dean for clinical affairs at New York University. He joined NYU in 1994 after working as senior vice president for medical and professional affairs at the Health and Hospitals Corporation.

“Harlem Hospital is a very special place,” says Dr. Chu. “It has been an anchor of quality care for the Harlem community for many years and a beacon for the training of minority health professionals. Despite tremendous turmoil in the health care environment, there are many opportunities in this partnership between Columbia and Harlem Hospital to continue to provide, and to further develop, quality programs to enhance the health of the Harlem community.”

NEW DEAN FOR HARLEM AFFILIATION

ONLINE INTERNET NUTRITION EDUCATION
Remembering Charles Drew

An exhibit developed by Archives and Special Collections at Columbia Health Sciences recognizes two anniversaries related to Dr. Charles R. Drew in 2000. The year was the 60-year anniversary of Dr. Drew’s graduation from P&S with a doctor of medical science degree. He was the first African-American to earn this degree in the United States. His dissertation was based on research on the properties and preservation of blood plasma in a blood bank he and Dr. John Scudder established at Presbyterian Hospital.

Ten years later, in 1950, Dr. Drew died after an automobile accident in North Carolina. His tragic early death evolved into a widely communicated false story that “the father of the blood bank” died because racism prevented him from receiving a blood transfusion.

The exhibit displays documents related to Dr. Drew’s time at P&S and Presbyterian Hospital. The exhibit includes his application to the doctor of medical science program, letters of recommendation, and his dissertation, “Banked Blood.”

Dr. Drew was regarded as an authority on the preservation of human blood for transfusion. His research at Columbia enabled him to develop efficient ways to process and store large quantities of blood plasma. As the leading authority in the field, he organized and directed the blood-plasma programs of the United States and Great Britain in the early years of World War II. He was also medical director of the first Red Cross blood bank. He protested the American Red Cross’s segregation of donated blood, declaring, “There is no scientific basis for the separation of the bloods of different races except on the basis of the individual blood types or groups.”

In 1942, he became chief surgeon at Freedmen’s Hospital in Washington, D.C., and professor of surgery at Howard University, where he trained many young African-American surgeons.

The exhibit will be on display through February 2001 in the lobby of the Augustus C. Long Health Sciences Library in the Hammer Health Sciences Center, 168th Street and Fort Washington Avenue.
Elvin A. Kabat, Ph.D.

Dr. Elvin A. Kabat, the Higgins Professor Emeritus of Microbiology, died June 16, 2000. He was a world-renowned immunologist whose contributions aided the fundamental understanding of antibodies. He founded the field of immunochemistry, the study of the chemical reactions and phenomena of immunity. His mentor, the late Dr. Michael Heidelberger, was regarded as the father of modern immunology.

Dr. Kabat and Dr. Heidelberger shared Columbia’s Louisa Gross Horwitz Prize in 1977 for outstanding research in biochemistry. Dr. Kabat was Dr. Heidelberger’s first graduate student at Columbia in the 1930s. A commemorative issue of Molecular Immunology honored Dr. Kabat’s 70th birthday in 1984, marking the first time the journal devoted an issue to an active scientist. Dr. Kabat received the nation’s highest award for scientific achievement, the National Medal of Science, in 1991.

A native of Manhattan, Dr. Kabat received master’s and Ph.D. degrees in biochemistry from Columbia. He joined the P&S faculty in 1941 and held appointments in microbiology and in human genetics and development.

Robert I. Levy, M.D.

Dr. Robert I. Levy, former vice president for Health Sciences at Columbia, died of pancreatic cancer Oct. 28, 2000, at Columbia-Presbyterian Medical Center.

Dr. Levy served as vice president from 1983 to 1984 then as senior assistant vice president until 1987. He also was professor of medicine. When he left the medical school administration, he became adjunct professor of medicine.

Earlier in his career, Dr. Levy was director of the National Heart, Lung and Blood Institute at the NIH. He is credited with research that helped link cholesterol levels with heart disease. At the time of his death, he was senior vice president for science and technology at American Home Products Corp.

Keith Reemtsma, M.D.

Dr. Keith Reemtsma, professor and chairman of surgery at P&S from 1971 to 1994, died June 23, 2000. He was an internationally known expert in human and cross-species organ transplantation.

Dr. Reemtsma is credited with first showing that non-human organs could function for a significant period after transplantation in humans. He attended medical school at the University of Pennsylvania and started training at Columbia-Presbyterian to become a surgeon. He served in the Navy and Marine Corps during the Korean War, then returned to Columbia-Presbyterian as chief resident. He earned a doctorate in medical science from P&S in 1958.

After leaving the chairman post, Dr. Reemtsma founded the International Center for Health Outcomes and Innovation Research (InCHOIR) at Columbia.
OTHER FACULTY DEATHS

Lothar Gidro-Frank, M.D., special lecturer in psychiatry, died Aug. 12, 2000.

Steven L. Goldberg, M.D., former assistant clinical professor of pathology, died in July 2000.

Lucy Wicks, Ph.D., assistant clinical professor of medical psychology (in psychiatry), died Sept. 8, 2000.

C. Philip Wilson, M.D., assistant clinical professor of psychiatry, died Aug. 19, 2000. (See the Alumni In Memoriam section for more information.)

CLASS OF 1929

Merton L. Griswold, a loyal and generous alumnus, died Aug. 6, 2000. A retired general and reconstructive surgeon, Dr. Griswold served as president of the Union County (New Jersey) Medical Society. His extramedical activities included tenures as president of the New Jersey Symphony and the Shakespeare Society of Plainfield. He is survived by his wife, Mary, two daughters, and a son.

CLASS OF 1930

The distinguished internist and medical historian Saul Jarcho died Sept. 10, 2000. He was the 1995 recipient of a gold medal from the American Institute of the History of Pharmacy in recognition of his book, “Quinine’s Predecessor: Francesco Torti and the Early History of Cinchona.” The author of some 250 articles, chapters, and reviews on the history of medicine, pathology, and paleopathology, he was a member of the pathology faculty at P&S from 1936 to 1942, before being called to serve his country in the Medical Intelligence Division of the Office of the U.S. Surgeon General during World War II, ultimately becoming director of the division. For that service he was awarded an Army Commendation Ribbon. Launching a private medical practice after the war, he made time to pursue research in the history of medicine. Following his retirement from medical practice, he continued his historical research and served as a consultant to the National Library of Medicine. He was a past president of the American Association for the History of Medicine and editor of the Bulletin of the New York Academy of Medicine. Other P&S alumni in the family included his late father Julius Jarcho’04 and his late brother Leonard Jarcho’41. Survivors include his wife, Irma, two sons, four grandchildren, and one great-grandchild.

CLASS OF 1934

Robert W. Fraser on Sept. 7, 1999. Dr. Fraser had been affiliated with St. Luke’s-Roosevelt Hospital. He served as a major in the Army Medical Corps during World War II. His survivors include a son and a daughter, both doctors, and five grandchildren... Milo Fritz, a former member of the Alaska State Legislature and medical practitioner in the Yukon, died Aug. 31, 2000. An ophthalmologist and otolaryngologist by training, Dr. Fritz taught at various institutions, including Duke University, the New York Eye and Ear Infirmary, and the University of Oregon. A consultant to the Alaska Native Health Service, he volunteered his services at itinerant eye, ear, nose and throat clinics deep in rural Alaska, generally flying himself to appointments. He described that experience in numerous articles. His public service included active duty as a flight surgeon with the U.S. Army Air Corps during World War II and three terms of office as a member of the Alaska state legislature. He is survived by his wife, Elizabeth, and a son.

CLASS OF 1935

Joseph Mandelbaum of Brooklyn died Feb. 12, 2000. A retired opthalmologist, Dr. Mandelbaum, the author of numerous articles on visual physiology, also held an MSD...
degree from NYU. He served as a captain in the U.S. Army from 1943 to 1946. He was medical director of the HIP Flatbush Medical Group and founding director of the League for Emotionally Disturbed Children. He was preceded in death by his wife, Harriet. He is survived by a daughter, two sons, and two grandchildren.

Class of 1936
Sidney A. Goldstine, a retired New York City internist, died Feb. 13, 2000, at age 91. He had been affiliated with Mount Sinai. He is survived by his wife, Tamie, a son, a daughter, and a granddaughter.

Class of 1937
Retired neurosurgeon Judah L. Ebin, one of the early pioneers in the field who practiced for more than three decades, died April 3, 2000. Interning at Kings County Hospital, he trained in neurosurgery at the Neurological Institute. Dr. Ebin pursued research in freezing techniques in neurosurgery and surgical treatment of Parkinson’s disease. He is survived by his wife, Virginia, three daughters, and two sons. . . . Thomas F. Reilly died June 30, 2000, at age 90. A retired surgeon formerly affiliated with St. Mary’s Hospital in Monroe Township, N.J., he served as the director of the hospital’s surgical staff and a member of its board of trustees. Dr. Reilly also had been vice president of the Passaic County Medical Society. He served in the U.S. Army Medical Corps during World War II. He is survived by his wife, Emily, a daughter, three grandchildren, and two great-grandchildren.

Class of 1939
David R. Winkler, a psychiatrist and vocal advocate of mental health, died May 22, 2000. Dr. Winkler served as medical officer in the U.S. Army Air Corps during World War II. Launching his career in family medicine, he decided in 1964 to pursue advanced training in psychiatry at Camarillo State Mental Hospital in Camarillo, Calif. He subsequently pursued a private practice in psychiatry. He is survived by his wife, Polly, a daughter, two sons, five stepchildren, and 15 grandchildren.

Class of 1941
Frank Hardart Jr., a retired obstetrician/gynecologist who had been affiliated with St. Vincent’s Hospital and Medical Center in New York, died April 6, 2000, of complications from ALS. He had been a close friend of his classmate, the writer Walker Percy. Dr. Hardart is survived by five sons and a daughter. . . . Edward W. Kloth died April 4, 2000. A retired psychiatrist formerly affiliated with Roosevelt Hospital, he served in the U.S. Navy during World War II. Survivors include his wife, Helen, a daughter, and two sons.

Class of 1942
John M. Daley of Delray Beach, Fla., died March 29, 2000, leaving behind his wife, Evelyn, and two daughters. Dr. Daley served with the U.S. Army Medical Corps in the European theater during World War II. An internist specializing in occupational medicine, he worked for many years as a physician in the medical department of the Exxon Corporation. . . . A retired internist and endocrinologist at Hartford Hospital in Connecticut, Frederick L. Nichols died March 21, 2000. He served as a captain in the U.S. Army Medical Corps from 1944 to 1946. Among the memorable highlights of his career he fondly recalled time spent as a medical missionary in Rhodesia in 1969. He is survived by his wife, Anne, five children, and eight grandchildren.

Class of 1942 MSD
S. Arthur Localio, a retired professor of surgery at NYU, died March 4, 2000. A graduate of the University of Rochester medical school, Dr. Localio pursued advanced study at P&S, where he joined the surgical faculty. In 1949 he moved downtown to NYU, where he attained the academic rank of Johnson & Johnson Distinguished Professor of Surgery. Dr. Localio published widely and served as North American chairman of the Section of General Surgery of the Pan American Medical Association. During World War II he saw active duty with the U.S. Army Medical Corps (7th Evacuation Hospital) in the Pacific theater, retiring with the rank of lieutenant colonel. He is survived by his wife, Ruth, a daughter, and three sons.

Class of 1943M
Orlando K. Stephenson, a retired family practitioner and former vice president of the Pennsylvania Medical Society, died May 12, 2000. He is survived by his wife, Carole, a son, and a daughter.

Class of 1943D
John T. Beaty died Nov. 12, 1999, from the paralysis and complications of ALS. “He researched and battled the disease bravely for two years,” wrote his wife, Catherine, who survives him along with a daughter and three sons. An internist by training, he became interested in alternative, nutritional, and preventive medicine.
CLASS OF 1944
Benjamin A. Barnes died Feb. 4, 2000. Associate professor of surgery emeritus at Harvard Medical School, he had long been affiliated with Massachusetts General Hospital. He was involved in the founding of some of the world’s first organ banks and served from 1968 to 1988 as director of the New England Organ Bank. Dr. Barnes was the author of numerous articles in the field of organ transplantation and other surgical areas. He served with the U.S. Army Medical Corps in occupied Germany following World War II. He is survived by his wife, Pamela, four daughters, two sons, and 10 grandchildren.

Frank S. Browne of Wichita Falls, Texas, died May 23, 2000. Immediately following his training in radiology at Columbia-Presbyterian, Dr. Browne served as an officer in the U.S. Navy Medical Corps during World War II. An instrument-rated pilot, he often flew to Texas hospitals as a radiology consultant. He served a tenure as secretary of the Wichita County Medical Society and the Texas Radiological Society. Survivors include his wife, Janet, two daughters, two sons, and four grandchildren.

Philip B. Lochhart died March 10, 2000, leaving behind his wife, Lyla, a son, and a daughter. Dr. Lochhart was a specialist in angiography and had been affiliated with St. Joseph’s Hospital in South Bend, Ind.

Irving A. Meeker Jr., a retired pediatric surgeon and member of the surgical faculty at the University of Southern California, died Feb. 12, 2000. Among his extramedical activities, he had been president of the Economic Round Table of Los Angeles. He served as an assistant flight surgeon on the U.S. aircraft carrier Princeton during World War II. Dr. Meeker founded the Children’s Surgery Research Foundation. His wife, Gloria, and five children are among the survivors.

William B. Waterman died Aug. 12, 2000, at age 82 of complications of leukemia. Trained in internal medicine, he divided his career between private practice in New York City and an associate medical directorship with Aetna Life in Hartford, Conn. Dr. Waterman was a loyal alumnus. He is survived by his wife, Marjorie, two daughters, two sons, and seven grandchildren.

CLASS OF 1945
Charles Philip Wilson, a psychiatrist who specialized in the treatment of eating disorders, died Aug. 19, 2000, from complications of heart disease. He was the 1991 recipient of the Sigmund Freud Award of the American Society of Psychoanalytic Physicians. Dr. Wilson’s professional accomplishments began early in his career, while still a resident in psychiatry at Presbyterian Hospital. It was then that he developed treatment regimens for such psychologically linked gastrointestinal problems as anorexia nervosa and bulimia, conditions seldom if ever properly diagnosed at the time. He theorized that the problem could be traced back to early phases of childhood development and mother-infant interaction. Dr. Wilson published widely and also edited five books in his field, notably, “The Fear of Being Fat.” He served on a U.S. Navy transport vessel in the Pacific during World War II. The experience first made him aware of the link between emotional changes and physical health, a lifelong subject of professional interest. He is survived by his wife, Christine, a daughter, Cynthia, two sons, Marc and Scott ’81, also a psychiatrist, and a grandson.

CLASS OF 1946
The Alumni Office has learned of the death of Daniel L. Weiss, a retired pathologist, in June 1999. Following an internship at the Hospital for Joint Diseases, Dr. Weiss worked for some years in the field of virology at the U.S. Army Medical Department Research and Graduate School at Walter Reed Hospital in Washington, D.C., before moving to San Francisco to head up the virology and rickettsiology divisions of the 5th Army laboratories. Following fellowships at Mount Sinai and Beth Israel hospitals in New York, he moved back to the nation’s capital to teach as clinical professor of pathology at George Washington University and to direct the laboratories at D.C. General Hospital. In 1977 he was named executive secretary for medical sciences at the National Research Council of the National Academy of Sciences in Washington. Some years later he was appointed deputy director of academic programs for the Veterans Administration and consultant on medical systems to the U.S. Public Health Service. He received the Sunderman Award for Clinical
IN MEMORIAM

Science and the “Golden Apple Award” as outstanding professor at Georgetown. He is survived by his wife, Mary, a daughter, and two sons.

CLASS OF 1951

John L. Decker, a retired surgeon and former P&S faculty member, died July 13, 2000, of cardiac arrhythmia, congestive heart failure, and complications of coronary artery disease. Before medical school, Dr. Decker saw active duty in the Pacific theater during World War II and was awarded a Purple Heart for wounds received in combat on Tinian Island in 1944. Following medical school, he trained in rheumatology at Massachusetts General Hospital. An expert on rheumatic diseases, especially systemic lupus erythematosus, he taught on the medical faculty of the University of Washington at Seattle and served as chief of the arthritis and rheumatism branch at the NIH and director of the Warren Grant Magnuson Clinical Center, the research hospital at the NIH. Widely published in the field, his considerable accomplishments earned him the gold medal of the American College of Rheumatology, of which he was a past president, and the NIH Director’s Award. Surviving him are his wife, Lucille, three daughters, a son, and three grandchildren.

C. Edmonds, a retired surgeon and former P&S faculty member, died Sept. 18, 2000. Serving as an officer in the U.S. Navy during World War II, he later joined the Army Medical Corps Reserve, from which he retired as colonel. Dr. Edmonds was clinical professor of surgery at P&S from 1966 to 1978 while running a busy private practice. In 1983, he pursued a “mini residency” in occupational medicine at the Institute for Environmental Health, University of Cincinnati College of Medicine, and then became medical director of U.S. Steel Corporation in Pittsburgh. Survivors include four daughters, a son, and four grandchildren.

CLASS OF 1955

Psychiatrist Gurston D. Goldin, a retired surgeon and former P&S faculty member, died April 25, 2000. An associate in clinical psychiatry at P&S, Dr. Goldin also held an M.S. degree from the Columbia School of Public Health. He is survived by his wife, Marjorie, and two sons. His father, Harry Goldin, graduated from P&S in 1924.

CLASS OF 1956

Ronald Feldman, assistant clinical professor of medicine at Albert Einstein College of Medicine, died June 29, 2000. He is survived by his wife, Iris, three sons, and two grandsons.

CLASS OF 1958 MSD

Keith Reemtsma, chairman of the Department of Surgery at P&S for two decisive decades, died June 23, 2000. (See the Faculty In Memoriam section for more information.)

CLASS OF 1959

Charles B. Davidson, a radiologist in Salem, Mass., died March 19, 2000. Among his volunteer activities, Dr. Davidson provided his radiological expertise pro bono on several trips to Haiti and other Third World countries. He is survived by his wife, Virginia, and two sons.

CLASS OF 1969

Word has been received of the accidental death July 6, 1999, of Charles S. Stevenson. He was killed when a tree fell on his car during a storm. Following graduation from medical school, Dr. Stevenson served in the U.S. Navy, including a stint as an intelligence officer aboard the USS Hawkins. Starting out his career as a general surgeon, he later specialized in emergency medicine and had been affiliated with Memorial Hospital in North Conway, N.H. He is survived by his wife, Diana, two daughters, and two sons.

CLASS OF 1977

Internist Ronald M. Henry died in January 2000, the exact date unknown. He was director of inpatient services and assistant director of residency training at Nassau County Medical Center and a member of the medical faculty at Stony Brook University. He was the author of “Respiratory Protocols for the Intern,” a manual of essential ICU respirator parameters and techniques for interns entering the ICU, and the “Nassau County Medical Center Consultation Guide.” A member of the Black and Latin Student Organization at P&S, he was an active participant in a nationwide recruitment effort to increase the number of underrepresented groups in medicine.
At the June 20 council dinner, outgoing P&S Alumni Association president Marianne Wolff ’52 handed over the gavel to “my hand surgeon,” president-elect David T.W. Chiu ’73. “In retrospect,” she said, “my term of office really represents the highlight of my career.” Dr. Chiu accepted the symbol of office, reassured “that I have Marianne’s cell phone number.” Dr. Chiu reflected on the role of the Alumni Association and pledged to work hard to make “a wonderful association even better.” As per tradition, Dr. Chiu presented Dr. Wolff with a bound book of minutes from her tenure in office and a ceremonial gavel.
As her last official duty Dr. Wolff introduced the evening’s guest speaker, Dr. Robert Solomon, the Byron Stookey Professor and Chairman of Neurosurgery. A medical graduate of Johns Hopkins who trained at the Neurological Institute, Dr. Solomon remarked that “the most significant changes in neurosurgery occurred since I started medical school. From then till today, it’s hardly recognizable as the same field. Microsurgery changed everything.” Dr. Solomon saluted one of his distinguished predecessors, the legendary neurosurgeon, J. Lawrence Pool’32, (see “Doctors in Print”) who during his active practice achieved an unheard of drop in mortality for cerebral aneurysm operations to 21.7 percent. Mortality, Dr. Solomon reported, is now down to less than 2 percent for the same operation. “The neurological revolution,” he said, “started with the first CAT scan, which literally revolutionized our ability to know precisely what is going on in the brain.” MRI and image-guided surgery further advanced precision, as did the gamma knife, a minimally invasive surgical tool developed at P&S. Another surgical godsend, the operating microscope, was first introduced in the 1960s by Dr. Pool. Dr. Solomon also credited the collaborative work of his vice chairman, Donald O. Quest’70. With an endowment of $12 million, the department runs one of the four or five busiest neurosurgery programs in the country.

Speaking at the Sept. 20 council dinner was something of a homecoming for Laurance J. Guido’69, director of the Columbia University Office of Alumni Relations. Dr. Guido, a former neurological surgeon and legal consultant in neuroscience, was introduced by his erstwhile professor in neurosurgery at P&S, Peter Carmel’70MSD. Classmate and fellow neurosurgeon, Robert Holtzman’69, was also on hand. About his former students, Dr. Carmel said, “Many went on to become famous alums and at least one went on to become a director of famous alums.” Clearly moved by the welcome, Dr. Guido said, “I’m delighted to come back and address you in a new capacity.” One of his goals in his new position, he said, is “to bring together the Morningside and the Health Sciences campuses” and to reunite alumni for a common purpose of promoting Columbia values in multiple endeavors. He expressed a desire to involve more P&S alumni in university-wide alumni programs in New York and around the country. “Being an alumnus is a lifelong continuum,” he said. The university is playing a new role in online distance learning, in which he invited all graduates to join. Stressing the need for collaboration across fields and between institutions, he reported on fathom.com, a new online educational endeavor to project the intellectual riches of Columbia outside the immediate campus community. The New York Public Library and the London School of Economics are partners in the program.

Welcome Wagon for New Students

On Aug. 22 the Alumni Association distributed goody bags, words of welcome, and practical advice to help the latest alumnus-to-be settle in. The coffee mugs with the blue P&S logo and ballpoint pens were immediately put to productive use.
REGIONAL PROGRAM

What would summer be without a gathering Down East? On Aug. 13, resident and summering alumni, family, and friends in Maine congregated at the elegant Asticou Inn in Northeast Harbor at a luncheon co-hosted by Douglas Pennoyer ’54 and Richard Pierson ’55. Regional representatives committee chairman, Oscar Garfein ’65, and incoming alumni president, David T.W. Chiu ’73, flew in for the festivities. Anke Nolting, associate dean of development, drove down from her home in Lubec along with her friends, Robert ’36 and Horty Sonneborn. Also on hand was H. Keith Brodie ’65, former president of Duke University, a longtime summer resident of Northeast Harbor. The irrepressible Felix Vann ’33, well into his 90s, drove up alone from Liberty and reported on his active life in North Carolina.

RECEPTION FOR NEW STUDENTS AND HOUSE STAFF

The Faculty Club was overflowing Sept. 6 with new students, new house staff, parents, local alumni, and faculty for the traditional wine and cheese welcoming party sponsored by the P&S Alumni Association. More than a dozen parents were on hand, beaming with pride as lifelong dreams come true as their offspring celebrated the start of medical school. Alumni Association president David T.W. Chiu ’73 delivered welcoming remarks, and Thomas Q. Morris ’58, interim dean for clinical and educational affairs at P&S, greeted the newcomers on behalf of the school. The inimitable John K. Lattimer ’38, chairman emeritus of urology and resident historian, brought along a medieval helmet as a vintage prop to help announce the fall Medieval Festival. He has played an active role in organizing and supporting the festival for many years.
An endowed chair was inaugurated in July 2000 in the Department of Obstetrics and Gynecology at Lenox Hill Hospital in New York to honor the department’s director emeritus, Hugh R.K. Barber.

George Nicklin’s first book, “Doctors in Peril,” which deals with physicians’ personal experiences with and triumphs over life-threatening illnesses and/or circumstances, was published in June 2000. Elmer Pader is the clinical preceptor for a new course offered at Mount Sinai medical school titled “The Art and Science of Medicine.” Charles M. Poser has been elected to fellowship in the Royal College of Physicians in Edinburgh. He was also nominated for an honorary D.Sc. Degree from the University of Sassari in Italy and was decorated by the King of Belgium in 1967. Closer to home, he received the bicentennial silver medal from Columbia University. Victor M. Torres, who now resides in San Juan, Puerto Rico, has published a book, “No quiero decir adios: Memorias de un hablador” (“I Don’t Want to Say Goodbye: Memoirs of a Talker”). The book contains three chapters dedicated to Vic’s years at P&S as a medical student, resident in dermatology, and fellow in dermatopathology.

Marvin M. Lipman has been elected to the board of trustees of U.S. Pharmacopeia. Since 1987, Marv has been chief medical adviser for Consumers Union and publisher of Consumer Reports magazine; he served on FDA and AMA advisory panels, as a consumer group representative to the International Organization of Consumers Unions and was a member of the 1969 Consumer Task Force for the White House Conference on Food, Nutrition and Health. He is clinical professor of medicine emeritus at New York Medical College. He served a two-year term as president of the Westchester County Academy of Medicine. At White Plains Hospital he was director of the Department of Medicine, chief of the Section of Endocrinology, and chairman of medical education.

Alfonse T. Masi’s research is on the hormonal relationships in rheumatoid arthritis; he co-edited, along with European editors, a volume of “Rheumatic Disease Clinics of North America” dealing with neuroendocrine and immune relationships in rheumatic diseases, published in November 2000. Harold F. Spalter, professor of clinical ophthalmology at P&S, was honored for outstanding ophthalmic achievement with the Dunnington Lectureship. He is also chairman of the Advisory Panel of Research to Prevent Blindness. In addition, he is on the board of trustees and medical advisory group of Helen Keller International, an organization that addresses endemic ocular diseases in underdeveloped countries worldwide.

Robert A. Maslansky is the director of addiction rehabilitation services at NYU Bellevue, a position he has held for the past 20 years.

The Trustees of Columbia University approved the appointment of Thomas Q. Morris as Alumni Professor of Clinical Medicine.

Pediatrician Thomas A. Plaut’s latest book, “Dr. Tom Plaut’s Asthma Guide for People of All Ages,” is acclaimed as an excellent resource for patients with asthma. One reviewer called the book “an asthma version of Dr. Spock.”
1961
Louis Sherwood has been appointed to two prestigious research committees, the Institute of Medicine Clinical Research Roundtable, which addresses the national clinical research agenda, and the Veterans Affairs National Research Advisory Council. ... The fifth edition of “Reichel: Care of the Elderly. Clinical Aspects of Aging” was published by Lippincott in 1999. William Reichel also co-authored (with J. Gallo and others) “The Handbook of Geriatric Assessment,” Aspen Publishers, 2000. ... In June 2000, Harvard’s Graduate School of Education conferred a master’s degree upon John F. Ryan. In 1998, John received the third Lifetime Achievement Award from the Anesthesia Section of the American Academy of Pediatrics and the International Society of Pediatric Anesthesia.

1963
Paul Bachner is serving as president of the College of American Pathologists.

1964
Nicholas A. Romas received the 2000 John Kingsley Lattimer Award for outstanding achievement in urology from the National Kidney Foundation of New York and New Jersey. ... William R. Wilson retired as professor of surgery and chief of the Division of Otolaryngology, Head and Neck Surgery and was appointed emeritus professor of surgery at George Washington University. Now he will have time for his avocation: to develop a nursery for flowering trees in Virginia.

1965
“A Clinician’s Guide to Tuberculosis” by Michael D. Iseman was published in the spring of 2000. During the seven years it took him to write the book Michael understood why most texts have multiple authors!

1967
Charles J. Hodge is chairman of neurosurgery at Syracuse University. He also serves on the American Board of Neurological Surgeons.

1968
David B. Case was awarded mastership in the American College of Physicians in the spring of 2000. Along with classmates John Postley and Carlton Boxhill he is part of a multi-specialty group, New York Physicians, L.L.P, located on Madison Avenue.

1972
Steven E. Locke has become the director of the Institute of Cybermedicine in the Department of Psychiatry at Harvard Medical School. He is associate professor of psychiatry at Harvard and associate professor of health sciences and technology at MIT. He is also chief of Harvard Vanguard Medical Associates in Boston.

1976
Michael J. Yaremchuk, clinical professor of surgery at Harvard Medical School and director of craniofacial surgery at Massachusetts General Hospital, was named one of the best plastic surgeons in Boston by Boston Magazine. Mike is completing a three-year NIH grant for tissue engineering. He was a visiting professor at the John S. Davis Society of Maryland.
1981
As a Harvard Scholar in Medicine, Ellen Sedy completed a study last year of the relationship between insulin resistance and hypertension in pregnancy. . . . Charles M. Wood has become a fellow of the American College of Physicians. He is with the Department of Internal Medicine and director of primary care at Kaiser Sunnyside Medical Center in Portland, Ore.

1982
Mark R. Sultan is chief of plastic surgery at Beth Israel Medical Center and St. Luke’s-Roosevelt Hospital Center in New York.

1983
Ira Rampil has returned to the New York City area to become professor of anesthesiology and neurosurgery and director of clinical research at SUNY at Stony Brook.

1984
Rachel Frydman Brem, associate professor of radiology at George Washington University, has become its director of breast imaging.

1986
The Pfizer Scholars Grant for Faculty Development in Women’s Health was awarded to Evelyn Attia for her study, “Gender Differences in Serotonin Function: Implications for Anorexia Nervosa.” Evelyn is a research psychiatrist at the New York State Psychiatric Institute. . . . Working for the Centers for Disease Control and Prevention, Theresa Diaz has been assigned to the Pan-American Health Organization in Brazil, where she will assist the Brazilian government with epidemiologic studies and surveillance of HIV, STDs, and TB. She also does clinical work at the U.S. Consulate.

1988
An obstetrician/gynecologist practicing in New Orleans, Quinn Peeper’s avocation as a pianist led him to Weill Recital Hall at Carnegie Hall in May 2000; the proceeds of the concert went to benefit SHARE, a self-help organization serving women with breast or ovarian cancers. He has given recitals to benefit a variety of charitable causes.

1991
Charles S. Carignan has started his own consulting firm, Stanwood Associates, working from Baltimore. He provides international consulting services in reproductive health. In addition, he sets up and monitors clinical trials.

1992
“Chinese Proverbs for Today’s World,” authored by Emil W. Chynn, represents his first volume of creative non-fiction. Emil is clinical assistant professor of ophthalmology at SUNY in Brooklyn, director of refractive surgery at St. Vincent’s Hospital, and LASIK surgeon at the TLC Laser Eye Center in Manhattan. He invites fellow P&S alumni to come in for a free consultation and a special discount if surgery is required.

1993
Karen Kinsell is medical director of Free Clinics in Fort Gaines, Ga. The clinics provide free dental, eye, and general medical care to persons who cannot afford it; funding comes from the Lions Club and local church groups. Many professionals volunteer their services to make the clinics a success. Karen also holds an M.P.H. degree.

2000
Alexander Martin Clark won the 2000 U.S. Open Squash Championship. This is Marty’s third championship in the past five years. Marty followed in the footsteps of J. Lawrence Poole ’32, who held the squash championship title in the late 1920s and early 1930s. Marty is a first-year resident in orthopedic surgery at Columbia-Presbyterian.
Up-to-the-minute specialized medical findings are now a double click away, thanks to a fortuitous link between two young surgeons who also happen to be brothers-in-law. Evan Garfein’99, a surgical resident at Brigham and Women’s Hospital in Boston, and Dr. Robert Ashton, a cardiothoracic surgical fellow at Columbia-Presbyterian, were shooting the breeze over lunch one day. Dr. Ashton expressed his frustration at the lack of direct internet access to the latest advances in cardiovascular surgery. Sites like DrKoop.com and WebMD.com offer a medical smorgasbord for physicians and patients, but no site serves the medical information needs of the specialist perennially strapped for time. Dr. Garfein sympathized, reiterating much the same concern. Over dessert—low cholesterol to be sure!—a gripe gelled into a venture. The result was MDLinx.com, a network of vertical “info-corrals” offering direct access to medical findings in diverse specialties. As of early December, 20 specialized sites geared to health-care professionals (cardiologists, psychiatrists, surgeons, and others) are up and running, with more sites coming soon. Each site focuses on a single medical specialty offering daily updates from the major peer-reviewed journals in the field. The site, MDLinx.com, does not replace journals, but rather guides the busy practitioner to information-rich blurbs that he or she can skim, selecting the ones to read in depth when time permits. “MDLinx acts as a beeper,” says co-founder Dr. Garfein, “to signal that, hey, there’s something out there you should read!” Access is free to the subscriber. As in other medical media, advertising from unaffiliated companies is the revenue source.

MDLinx CEO David Rothenberg, Dr. Garfein’s college roommate at Princeton, oversees business and strategy. One of Dr. Garfein’s and Dr. Ashton’s Columbia mentors, cardiac surgeon Dr. Mehmet Oz, serves on the board of directors. “If we can create, as we have, a product that allows a guy like Mehmet to keep current in his field,” says Dr. Garfein, “then I think we’re on the right track.” Oscar Garfein’65, Dr. Garfein’s father and Dr. Ashton’s father-in-law, serves as medical editor and consultant.

With an estimated 35 percent of all doctors nationwide and 100 percent of all recent medical school graduates now navigating the internet on a regular basis, the new site is an invaluable rudder. As Evan Garfein puts it, “This is a tool created by physicians for physicians. I hope that the greater P&S family of alumni and faculty will drop by for a look.” The company also can be reached by phone in Washington, D.C., at (202) 543-6544.
DOCTORS IN PRINT

“Here and Hereafter: A Brain Surgeon’s Views”
By J. Lawrence Pool
Rainbow Press, 1999
112 pages

In 13 books composed over five decades, whose subjects have run the gamut from brain aneurysm and acoustic neuromas to Izaak Walton and America’s Valley Forge, J. Lawrence Pool ’32/MSD’41, former professor and chairman of neurosurgery at P&S, has focused on physical phenomena. Now in his 14th work, “Here and Hereafter: A Brain Surgeon’s Views,” composed in his 94th year, the author, ever vigorous of mind and spirit, takes a metaphysical pivot. This slender, albeit intriguing, volume comprises an account of tangles with the Grim Reaper in the OR and elsewhere and a scientific attempt to come to grips with such arcane phenomena as extrasensory perception. Dr. Pool posits that ESP may be the possible consequence of thought waves carried via optic nerves from the retina straight to the brain stem. The book’s last chapter is devoted to some somber and some whimsical reflections on the hereafter. While not everyone may be inclined to follow Dr. Pool’s speculation across the chasm of doubt, “Here and Hereafter” makes for a stimulating read.

“Doctors in the Movies: Boil the Water and Just Say Aah”
By Peter E. Dans
Medi-Ed Press, 2000
384 pages

In 60 years of Hollywood film history, physicians and surgeons have been alternately glorified as crusading idealists and lambasted as conniving cynics. Author Peter E. Dans ’61, associate professor of medicine at John Hopkins, has been moonlighting for the past decade as film critic for Pharos, the quarterly journal of the Alpha Omega Alpha honor medical society. In his regular column, “Physician at the Movies,” Dans, an avid cinephile and expert in medical ethics and health policy, brings his clinical and critical thinking to bear in the diagnosis of flicks with a medical theme or spin.

In his new book, “Doctors in the Movies: Boil the Water and Just Say Aah,” Dans sets out to examine the meta-phenomenon of Hollywood’s take on medicine as a window to society’s changing attitudes toward the medical profession and its practitioners. In his introduction, Dans traces the evolution of medical stereotypes from the “earnest Doctor Kildare, the kindly Doctor Christian, and the driven scientist, Arrowsmith,” and their amiable heirs, Marcus Welby and Ben Casey, to the stinging portrayal of unscrupulous doctors in “Critical Care,” corrupt administrators in “Coma,” and ominous institutions in “One Flew Over the Cuckoo’s Nest.”

While he does not discount honest critiques of medical practice, the author argues that “a generation that hardly knew serious illness came increasingly to view good health as a right rather than a fragile blessing,” thus paving the way for the doctor’s precipitous fall from grace from saint to sinner. In such chapters as “Hollywood Goes to the Movies,” “Where Are All the Women Doctors?” and “The Dark Side of Doctors,” Dans takes readers on a whirlwind tour through the Hollywood archipelago. Encyclopedic in scope, rich in research, this medical cinephile’s bible may lack the synthetic thinking of a professional film critic, opting instead for an appraisal based on a compilation approach. Its strength, however, lies in the author’s exhaustive grasp of his subject. Potboilers, grade B movies, bona fide classics, medical thrillers, melodramas, and comedies, Dans has seen and commented on them all. Epidemiologically speaking, the bell curve of public opinion at the box office may well be taking a turn for the better. In such recent movies as “Awakenings” (based on the writings of Dr. Oliver Sacks) and “The Fugitive” (based on the old television series by the same name), Dans observes a more balanced and complex portrayal of the medical practitioner. Ultimately, “Doctors in the Movies” succeeds in raising the reader’s consciousness and thereby whetting our appetite, sending us back for more medical encounters with the silver screen.
M.D. PUZZLE MASTER DISPENSES MIND-BENDING RELIEF

By Peter Wortsman

1 Across: Excalibur’s wielder.

2 Across: Maker of mind-bending enigmas.

3 Across: Abbreviation for healer.

If you answered, Arthur Verdesca, M.D., sharpen your pencil and read on. Dr. Verdesca’55, an internist specializing in occupational medicine, is a puzzle-maker by avocation, a one-man antidote to the ennui of weary multitudes who gobble up his “prescription” of choice, crossword puzzles published in the New York Times, the Los Angeles Times Syndicate, the Chicago Tribune Syndicate, the Washington Post, and USA Today.

Down to a current “modest” output of 40 puzzles a year, Dr. Verdesca at one point produced so many puzzles that his New York Times editor, the late Eugene Maleska, urged him to adopt a string of pseudonyms, M.D. Randolph, David S. Carter, Mike Salvatore.

“Ever a man who majored in hobbies,” as Dr. Verdesca says of himself, he still relaxes over multiple ongoing games of postal chess with opponents all over the world and regularly ranks among the finalists in the U.S. Open Crossword Puzzle Contest. For more than a decade he hosted a weekly radio program of classical music. Also the author of clinical papers, his monthly column on health written for various in-house organs of AT&T in his former capacity as company medical director were compiled and published as a volume for the layman, “Live, Work and Be Healthy” (Van Nostrand Reinhold, 1980). Past president of the New York County Occupational Medical Society, he currently serves as corporate medical director for the American International Group.

As he tells it, with the same deadpan humor that enlivens his puzzle clues, his puzzling creative output erupted one evening in a valiant battle with paternal angst: “My older daughter was supposed to come home at 11 o’clock one night and she wasn’t home. I figured she was dead. To distract myself, I made up a puzzle. She came home. I finished it. I mailed it to Mr. Maleska at the Times. He wrote back, ‘No India paper and I don’t like your margins.’ So I got better paper.”

While Mr. Maleska adamantly refused to view such ingenious word assemblage as the product of a creator, opting instead for the title crossword constructor, Dr. Verdesca is not so sure. “When I’m making a puzzle I’m outside of time,” he reflects with a gnomic glow. The result, he says, “may not be the Sistine Chapel,” but it is “a thing of beauty that’s symmetrical, that looks good, that feels good, and that gives people a kick.”

Construction or creation, P&S readers will now have the opportunity to judge for themselves. The crossword puzzle on the next page launches a feature that Dr. Verdesca has graciously agreed to provide on a regular basis. Out of respect for the intelligence of his fellow P&S alumni, Dr. Verdesca has served up “a toughie.” Good luck!