The New Dean
Gerald Fischbach

Also Inside:
• Medical Style
• Kandel’s Laws
• Alumni Profile: Larry Pool
Chairman, Editorial Board
Thomas Q. Morris, M.D.
Alumni Professor of Clinical Medicine
Vice Dean, College of Physicians & Surgeons
Senior Associate Vice President, Columbia Health Sciences

Editor
Bonita Eaton Enochs
Assistant Vice President, External Relations
Director of Publications

Contributing Writers
Nicholas Christy M.D.
Jennifer Freeman
Michael Hyde
Jack Lucentini

Assistant to the Editor
Angela Muniz

Alumni News Editor
Marianne Wolff, M.D.

Alumni Writer
Peter Wortsman

Designer
Howard Roberts
HRoberts Design

Editorial Board
Rita Charon, M.D.
Gerald D. Fischbach, M.D.
Kenneth Forde, M.D.
Bruce Forester, M.D.
Oscar Garfein, M.D.
Leonard C. Harber, M.D.
Edgar Housepian, M.D.
Georgiana Jagiello, M.D.
Tim Jancelewicz’03
Jeremy Keenan’02
Jonathan LaPook, M.D.
Jay Lefkowitch, M.D.
Stephen E. Novak
Carmen Ortiz-Neu, M.D.
Soo Mi Park’03
John Schullinger, M.D.
Joseph Tenenbaum, M.D.
John Truman, M.D.
David Walker’02
Myron Weisfeldt, M.D.

P&S is published three times a year for alumni, faculty, students, and other supporters of the College of Physicians & Surgeons. It is published by the college and the P&S Alumni Association through the Office of External Relations.

Address correspondence to:
P&S Editor
College of Physicians & Surgeons
630 W 168th St.
New York, NY 10032
E-mail: psjournal@columbia.edu

Alumni should update their addresses by writing the Alumni Association at the address above or calling the alumni office at (212) 305-1454.

Faculty should contact their departmental administrators to update their addresses, obtained through the Columbia University personnel system.

Others with questions about the mailing list may contact the Office of External Relations at (212) 305-3877.

P&S is printed on recycled paper.
In This Issue

2 Faculty Remembered: Douglas Damrosch, 1915-1991

4 Clinical Advances
- Care without borders
- Setting the pace for heart health
- CD-ROM highlights breast care

7 Research Reports
- Alexander disease gene discovered
- Late fatherhood linked to schizophrenia
- Adult stem cells revitalize hearts in rats
- Free radicals mediate arsenic’s harmful effects
- Fluvoxamine and childhood anxiety
- Risk factors in heart transplantation survival
- High white blood cell count may indicate stroke risk
- Carbon monoxide has unexpected benefits
- Anti-cancer drugs with temporary side effects

10 New Man on Campus
Dr. Gerald Fischbach brings a long list of accomplishments as a scientist, a medical school faculty member and department chairman, and an NIH director to his new challenges as vice president and dean.

16 Donations of the Paper Kind
Donations to Archives & Special Collections

18 P&S Students
A simple poetry reading becomes a fashion show of clothing made from items worn by doctors.

20 P&S News
- Commencement awards
- Residency match
- Eric Kandel's commencement remarks
- Distinguished Teacher Award

32 In Memoriam
Faculty and alumni who have died

35 Alumni Section
Profile: J. Lawrence Pool’32 MSD’41
Crossword puzzle: CEE-ZURES

ON THE COVER: The new dean, Gerald Fischbach. Photograph by Jonathan Smith
Douglas Damrosch practiced pediatrics at Babies Hospital and downtown (meaning East 85th Street) from 1948 to 1967, during the legendary “McIntosh Era.” As a member of a pediatrics department abounding in talented clinicians—Altman, Wood, Wolff, Bauman, Brush, Singer, and McIntosh himself—and famous investigators—Alexander, Andersen, Harris, Day, Riley, Grumbach, and McCune—he earned a unique place. How he achieved this is not easy to explain. A quiet force of manner, scholarship, diagnostic astuteness: He had all these qualities. But the impediment to a clear, simple narrative is this: He undertook a complicated career, and the portion of it that exerted the greatest influence on the department and the college came in his first years at Columbia. To do the subject justice, it seems best to present it backward, that is in reverse temporal order.

His background, of course, belongs at the beginning. Dr. Damrosch was lucky in his birth and education. He came from a musical family. His great-uncle was Walter Damrosch (1862-1950), a conductor, composer, violinist, teacher of music to schoolchildren in the 1930s through radio broadcasting, and in the early 1900s New York City colleague and rival of Mahler and Toscanini. Damrosch recalled, “They gave me a violin early on...but when they heard the sound they sent me to medical school instead.” (New York Times, Jan. 18,
Douglas Damrosch (1910-1970) He attended Kent School, Columbia College, and P&S, then took his pediatric internship at New York Hospital and one year of pediatric residency at Babies before entering active duty in the U.S. Naval Reserve—just before World War II—serving on destroyers, then at the Naval medical school in epidemiology and tropical medicine (1942-46). The next two years saw completion of his residency at Babies; he joined the attending staff in 1948, rising to the rank of associate professor of pediatrics, an unusual title for a practitioner.

At age 52, after his 20 brilliant practicing and teaching years at Babies, he began to wish for "something else." There followed about a decade and a half during which he held six or so administrative posts. For a short time he worked in research on infectious disease with Hattie Alexander; starting that late in life he found, in the words of a colleague, that "investigators are born, not made." But authoritative judges believed he had administrative ability. Paul A. Marks described him as a "very wise administrator...a complete and conscientious leader," opinions based on Dr. Damrosch's time as assistant, then associate, dean at P&S, when he skillfully carried out delicate personnel tasks, as did Bernard Schoenberg in later years. In 1967, he took on the challenging post of medical director of the Mary Imogene Bassett Hospital in Cooperstown, one of the medical school's most durable affiliates. But Douglas Damrosch was a city man, the Bassett staff had a different orientation and a different clientele, and the mixture proved not wholly compatible. Always adventurous, he undertook in 1971 the formidable job of director of CPMC with a mandate to get PH and P&S to work together harmoniously. But, it is said, neither the dean nor the hospital's executive officer was disposed to yield any authority, so the arrangement turned out to be unworkable. These highly responsible and honorific positions—which Dr. Damrosch took on bravely and with great enthusiasm—sometimes founndered, not through any fault of his but because of flaws in the design of the "job descriptions."

Douglas Damrosch's "clinical" years, 1948-67, seemed to his friends and colleagues to be his best. He excelled in every way a physician can. He and his mentor and partner, Charles Wood, carried on an immense practice, including so many families of doctors that no one could see how they made a living (this was in the genial days when doctors took care of one another's families for nothing). Damrosch was known for his clinical acumen. At weekly pediatric grand rounds, the chairman, Dr. McIntosh, very often turned around from his front row seat to ask Dr. Damrosch in the second row, "What do you think, Doug?" When the pediatric residents would scan the roster of attendings making rounds, they always rejoiced when the name Damrosch was assigned to their service.

Neither Damrosch nor Wood ever hesitated to drive through snowdrifts for house calls. Often enough, this chore might consume most of a winter night. Damrosch was a master at sensing which mothers could be trusted to give accurate reports about a child's acute illness over the phone; this skill was, of course, crucial in determining who should get a house call and who not. Dr. Damrosch's abilities were all-embracing. He was equally good at consoling bereaved parents and at answering courteously when a mother asked him during morning "telephone hour" which half of the double boiler goes on top. It scarcely needs emphasizing that medical students in third- and fourth-year pediatrics fought to get Damrosch as preceptor. Along with everything else, he was technically adept, for many years doing difficult exchange transfusions for babies with erythroblastosis fetalis.

Douglas Damrosch had a certain elegance about him, empathy, warmth, a cultivated intellect, balanced by a delightful sense of humor—all attributes of a great physician.

Author's Note: The writer received valuable help from William A. Bauman, Melvin M. Grumbach, Joseph A. Silverman, John Truman, and Dr. Damrosch's widow. An essential footnote: Dr. Damrosch shared a rare talent with the poet A.E. Housman in composing brief, eloquent tributes to colleagues, living and dead. In 1956 he wrote, produced, and directed an operetta, "The Mastersingers of Valhalla Heights," a history of Babies Hospital, translated both musically and verbally into the idiom of Richard Wagner's only comic opera, "Die Meistersinger."
When the United Nations hosted its Millennium Summit last year, seven foreign heads of state took the opportunity to get some of the world’s best health care. They came to New York-Presbyterian Hospital.

Such occurrences aren’t unusual. Members of Middle Eastern royal families, for instance, commonly visit the hospital. This gives the hospital system more than prestige. In a challenging economic climate, it also provides new revenue sources that help Columbia and Cornell care for the needy and conduct research.

New York-Presbyterian has drawn a rapidly growing number of international patients in the past two years, since setting up an international services program in 1998. New York-Presbyterian is now a leader among the country’s hospitals in international outreach.

“We need to cast a wider net in terms of where we can promote our services,” says the head of the program, Jose Nuñez, vice president of international and corporate health.

Specialized hospital staff with an array of language capabilities field phone calls and e-mail requests about particular services from individuals around the world. Staff strive to give personalized attention to each prospective patient.

Not all international patients are royal family members or heads of state. The majority of international patients seek what they perceive to be the finest care anywhere in the world. The effort is paying off for the bottom line. The international revenues doubled from 1999 to 2000 for the hospital and the two medical schools, and “we are right on target for 2001, despite the economic downturn which has been felt globally,” says Mr. Nuñez.

The hospital has had two international patient centers since 1999, located in the main lobbies of Columbia-Presbyterian’s Milstein Hospital Building and New York Weill Cornell’s Greenberg Pavilion.

The former New York Hospital had the Corporate Care System and the Executive Registry, two programs catering to an executive clientele. Columbia-Presbyterian also had an executive physical program. “In late 1999, we merged these programs with International Services to create Columbia Weill Cornell International and Corporate Health because many of the services provided to international patients are similar to those the local corporate community demands,” says Mr. Nuñez.

The program employs regional coordinators who speak Spanish, Greek, Turkish, Arabic, French, Portuguese, Korean, Japanese, Chinese (Mandarin), and Russian. The hospital’s volunteer corps offer many other language capabilities.

The centers “function as a liaison,” says Mr. Nuñez, who was tapped to set up the international services program after heading a similar program at Methodist Hospital in Houston. “Our international patients are very sophisticated and the advent of the Web has enabled many people to do comparative shopping.

“It’s easy for someone in Saudi Arabia to visit the Cleveland Clinic, Memorial Sloan-Kettering Cancer Center, and New York-Presbyterian in one day, by going to their web sites.”

The International and Corporate Health program will launch a comprehensive preventive medicine outreach to local and international companies to make them aware of the “one-stop shopping health care resource” available at New York-Presbyterian to help them keep their employees healthy, says Mr. Nuñez.
When you visit her office, Dr. Lori Mosca is liable to grab a massive, lumpy glob of yellowish stuff off her bookshelf and cheerfully present it to you. “Five pounds of fat,” she smiles. “Hold it.”

It turns out to be plastic, but Dr. Mosca’s demonstration illustrates her passion for dramatizing the importance of cardiovascular health and fitness. She puts that passion to work as director of New York-Presbyterian Hospital’s new preventive cardiology program, a wide-ranging effort to change physician practices and boost long-term patient health.

“I’ve never seen a preventive care initiative on this scale,” says Dr. Mosca. The program is multi-faceted, ranging from the creation last winter of a new prevention center in midtown Manhattan to checklists of screening and follow-up activities for each cardiology patient released and free screenings for families of patients.

At the Columbia Center for Heart Disease Prevention, set up last winter on East 60th Street, the program contracts with companies to provide screenings and preventive treatment to employees. Patient care is individualized. Columbia cardiologists receive checklists for screening and follow-up of each patient. Preventive care educators work with each patient to provide further advice. Hospital staff contact patients after they leave the hospital to check on the progress of follow-up care, such as rehabilitation and blood pressure monitoring. Families of patients are eligible for free cardiovascular health screenings.

The program is particularly relevant, as prevention increasingly takes the national spotlight. In mid-May, for instance, the National Heart, Lung and Blood Institute issued new guidelines expected to expand the number of Americans treated for high cholesterol.

But Dr. Mosca’s reasons for pursuing a career in preventive cardiology are also personal. “My father had a heart attack while I was in medical school,” she recalls. “I remember taking him to the emergency room and thinking, ‘What could have been done differently? How could this heart attack have been prevented?’

“Many patients, unlike my father, don’t get a second chance,” she adds.

Much of the decline in the heart disease death rate over the past three decades can be attributed to healthier lifestyles, she points out, but heart disease remains the leading cause of death in industrialized nations.

“There’s tremendous documentation that risk-reducing strategies for heart disease are effective,” Dr. Mosca adds, “but we as physicians often don’t implement them. In medical school we don’t get a lot of training in prevention. Urgent demands often take precedence.”

Before joining P&S in 2000 as associate professor of medicine, Dr. Mosca spent eight years heading a similar program at the University of Michigan in Ann Arbor. The Michigan program is a specialized center where patients come for preventive care and advice. The New York-Presbyterian program focuses on improving whole systems, to help other physicians put prevention into practice.

“Instead of being the doctor that patients come to, I’m the doctor that’s enabling your doctor to provide better preventive care,” says Dr. Mosca. “My goal in coming here was to connect the dots. There were all these wonderful, small programs that would be enhanced by a coordinated effort.”

In addition to heading a staff in preventive cardiology, Dr. Mosca also oversees a three-year clinical trial of the program’s effectiveness, with a research grant from the Aetna Fund. “We’re going to test, at both the Columbia and Cornell campuses, the effectiveness of having a preventive care facilitator and educator helping patients with heart disease.”

For now, the program focuses on cardiologists and their patients. Later, it will include primary care doctors and patients. A working group of 40 faculty and staff ensure that evidence-based prevention strategies are implemented at various contact points throughout the patient’s hospital stay. Members of the group also collect and distribute information on preventive cardiology.
CD-ROM HIGHLIGHTS BREAST CARE

Although breast cancer and other breast diseases still hold the power to terrify women, giant strides in the diagnosis and treatment of breast disease in the past decade have improved and lengthened the lives of survivors. That prompted the Department of Surgery to produce a free, comprehensive CD-ROM set to educate the public about breast disease. The CD was developed with the Avon Products Foundation Breast Center of the Herbert Irving Comprehensive Cancer Center.

The producers hope the double CD set will not only ease fears and help patients participate in their treatment, but also lead to a broader effort of Internet-based breast care education. The department began distributing the set early this year.

"Information is vital in helping women overcome their fears of breast disease and explaining the importance of self-examination, mammography, and regular check-ups," says Eric A. Rose’75, the Johnson & Johnson and Morris & Rose Milstein Professor and Chairman of Surgery.

The CD set’s overall message is the importance of a proactive approach to breast health and early detection. It contains a series of presentations in plain English covering every aspect of breast disease and featuring world experts from the Columbia faculty.

Times have changed since radical mastectomy was the sole treatment for breast disease. Women—and the 1 percent of men who have breast cancer—need to understand the multidisciplinary approach that characterizes breast care in the 21st century.

New diagnostic tools and many advances in therapies, including surgery, have improved the survival rate among women with breast cancer and provided patients a better quality of life.

The CD set covers such topics as risk factors, detection methods, genetic counseling, diet, and lifestyle considerations in breast disease prevention. It also offers advice on how to choose an imaging facility.

Faculty members featured on the CD-ROM include Dr. Rose; Karen Antman’74, the Wu Professor of Medicine and director of the Herbert Irving Comprehensive Cancer Center; Dr. David W Kinne, retired professor of surgery; and Dr. Freya Schnabel, associate professor of clinical surgery and chief of the breast surgery division.

The CD is compatible with both Macintosh and PC platforms but works best on PCs. It’s designed primarily for patients but also is useful for primary care doctors.

A more comprehensive computer-based education program is planned.

More than 1,000 of the free CD sets have been distributed. The surgery department takes requests for the CD set by telephone (1-800-543-2782) and fax (212-305-9495).
ALEXANDER DISEASE GENE DISCOVERED

Researchers have pinpointed the gene whose mutation causes Alexander disease, a rare and fatal childhood brain disorder. The disease is in a family of disorders characterized by abnormalities of the myelin sheath, a protective insulation covering nerve cells. The disease often strikes infants before their first birthday and devastates the nervous system, killing most victims by age 6.

Dr. James Goldman, professor of pathology at P&S, and colleagues around the world pinpointed mutations in the gene for glial fibrillary acidic protein (GFAP). The findings were reported in the Jan. 3, 2001, issue of Nature Genetics.

Alexander disease affects glial cells. GFAP is an intermediate filament protein found in astrocytes, one of the two major types of glia. The mutant protein in the astrocyte apparently disrupts the development and survival of the other glial cell type, the oligodendrocyte, which produces and maintains the myelin.

LATE FATHERHOOD LINKED TO SCHIZOPHRENIA

Older fathers are considerably more likely to have children with schizophrenia, P&S research has found. The findings, published in the April 2001 issue of the Archives of General Psychiatry, extend a growing body of evidence that older fathers are more likely to have children with a wide variety of gene-influenced illnesses.

Dr. Dolores Malaspina, associate professor of clinical psychiatry at P&S and head of the clinical neurobiology lab at the New York State Psychiatric Institute’s Medical Genetics Division, notes that the findings support other studies showing that men, as well as women, have biological clocks.

ADULT STEM CELLS REVITALIZE HEARTS IN RATS

New treatments for heart attack patients could result from a discovery led by Dr. Silviu Itescu, associate research scientist in surgery and director of transplantation immunology. Dr. Itescu and colleagues identified a type of stem cell, present in adult human bone marrow, that is capable of blood vessel development.

The researchers injected the cells into rats that had suffered heart attacks two days earlier. The cells went exclusively to the damaged heart tissue, where they triggered the formation of new blood vessels, resulting in sustained improvement in heart function by as much as 30 percent to 40 percent. The research was published in the April 2001 issue of the journal Nature Medicine.

FREE RADICALS MEDIATE ARSENIC’S HARMFUL EFFECTS

Arsenic, a cancer-causing metal that poisons millions of people worldwide, exerts its harmful effects by boosting the body’s production of damaging chemicals called free radicals, Columbia researchers report. New research published in the Feb. 13, 2001, Proceedings of the National Academy of Sciences adds to growing evidence that nutrients called antioxidants, which eliminate free radicals, may help prevent cancer and other illnesses caused by such environmental toxins as arsenic, cadmium, and asbestos.

Arsenic can enter the body primarily through ingestion of contaminated water, food, or drugs, or by inhalation, usually as a result of workplace exposure. The study showed that cells cultured in the laboratory sharply increased their free radical production within five minutes of exposure to arsenic, reports Dr. Tom K. Hei, professor of radiation oncology and of public health.
FLUVOXAMINE AND CHILDHOOD ANXIETY

Fluvoxamine is a safe and efficacious treatment for anxiety disorders in patients ages 6 to 17, report P&S researchers. Results were published in the April 26, 2001, New England Journal of Medicine. Fluvoxamine could become the first medication proven effective for social phobia, separation anxiety disorder, and generalized anxiety disorder in this age group. Nearly three-fourths of the study participants taking fluvoxamine—compared to less than one-third of the control group—responded favorably to treatment.

Doctors have increasingly recognized the prevalence and seriousness of pediatric anxiety disorders, says study co-author Dr. Laurence L. Greenhill, professor of clinical psychiatry. These disorders can impair normal childhood activities and are predictors of depression, suicide attempts, and anxiety disorders in adulthood.

RISK FACTORS IN HEART TRANSPLANTATION SURVIVAL

Nearly half of heart transplant recipients (40 percent) live 10 or more years, but patients who had coronary artery disease before transplantation did not do as well in the long term. A study published in the January issue of the Journal of the American College of Cardiology suggests that patients who monitor and treat their underlying coronary artery disease after surgery may improve their long-term survival.

The retrospective study was headed by Dr. Niloo M. Edwards, assistant professor of surgery and director of cardiac transplantation. Results underscore the need to monitor and prevent known risk factors for coronary artery disease after heart transplantation. Specifically, the authors recommend routine use of cholesterol-lowering agents and calcium channel blockers in heart transplant recipients. The study also documents the effectiveness of heart transplantation in long-term survival and quality of life. Given current trends in transplantation and heart disease management, the authors anticipate that the number of patients who survive 10 or more years will continue to increase.

HIGH WHITE BLOOD CELL COUNT MAY INDICATE STROKE RISK

Higher than average white blood cell counts may indicate higher stroke risk, at least among minorities, P&S researchers report in findings based on evaluations of 1,422 individuals participating in a northern Manhattan stroke study. The research was published in the April 2001 issue of the journal Stroke.

Dr. Mitchell S. Elkind, assistant professor of neurology and lead author of the study, says the researchers found that in non-white and especially Hispanic patients, high levels of white blood cells are not just indicators of inflammation, but also are linked to carotid atherosclerosis, a build-up of fatty deposits in an artery to the brain and a major risk factor for stroke.

CARBON MONOXIDE HAS UNEXPECTED BENEFITS

Exposure to carbon monoxide can have fatal consequences, but a P&S study published in the May issue of Nature Medicine demonstrates that carbon monoxide may also have a life-saving effect when blood vessels are blocked, such as during heart attack or stroke.

Dr. David J. Pinsky, associate professor of medicine, says carbon monoxide appears to help restore blood flow to organs threatened with a cut-off blood supply by enhancing the body’s own clot-dissolving mechanisms and by dilating blood vessels.
ANTI-CANCER DRUGS
WITH TEMPORARY SIDE EFFECTS

Several innovative anti-cancer drugs in trials are designed to block the development of new blood vessels in tumors, thus starving the cancerous growths. But researchers have worried that such treatment could have side effects, such as interfering with normal blood vessel function or development. Recent experiments by Columbia researchers suggest this may not be a serious problem, at least for the adult female reproductive system.

The researchers found that blocking blood vessel development in healthy adult monkeys and mice appears to have little effect beyond temporarily disrupting the menstrual and estrous cycle. “It’s encouraging because it shows that yes, the therapeutics are active. They block angiogenesis,” says Dr. Jan Kitajewski, associate clinical professor of pathology and obstetrics/gynecology. “But it’s also encouraging because the initial results from the monkey show that the effects are reversible.”

Angiogenesis, the formation of new blood vessels, occurs principally in the embryo with two notable exceptions: the adult female reproductive system, where angiogenesis occurs cyclically with the menstrual cycle, and in cancer, where new blood vessels appear to feed growing tumors.

The putative new anti-tumor drugs are designed to block angiogenesis by hampering a cell-to-cell communication system called VEGF, which is key to blood vessel development. Columbia researchers found that in healthy adult mammals, jamming this signaling pathway interferes with menstrual functions.

The research was conducted by Dr. Kitajewski; Dr. Ralf C. Zimmermann, assistant professor of ob/gyn; Dr. Michel Ferin, professor of ob/gyn; and colleagues.

The researchers investigated a drug derived from an antibody that blocks the cellular receptors that sense incoming VEGF signals. This same substance and similar agents are in clinical trials or more preliminary research by pharmaceutical companies including ImClone Systems and Regeneron, says Dr. Kitajewski. The substances appear to be effective in fighting cancer in mice.

In healthy mice, the Columbia group found, the antibody prevented vessel formation in the corpus luteum, a hormone-producing structure that develops in the ovary after ovulation in each cycle (at the site of a released egg). The research was published in the July 2001 issue of Microvascular Research.

In rhesus monkeys, Dr. Zimmermann and Dr. Ferin showed that the treatment slows the development and maturation of follicles, cavities containing the oocytes to be released for possible fertilization. However, the monkey experiment indicated that cyclic reproductive function returns to normal when the treatment ends. “It may affect fertility but probably not permanently,” says Dr. Zimmermann.

The monkey research was published in the February 2001 issue of the Journal of Clinical Endocrinology and Metabolism. Similar studies in the mouse are under way to determine whether early follicle development has an essential requirement for angiogenesis.
ot since 1930—when 38-year-old Willard Rappleye was recruited from Harvard to be dean of P&S—has Columbia named someone outside its ranks as dean. Gerald D. Fischbach, M.D., was named Vice President for Health and Biomedical Sciences, Dean of the Faculty of the Health Sciences, and Dean of the Faculty of Medicine in late 2000 and began his duties officially in February 2001.

His vitals have been communicated in numerous messages: He’s a 1965 Cornell medical school graduate. He was a young researcher at the NIH, then a faculty member and department chair at Harvard and at Washington University in St. Louis. He returned to the NIH as director of the National Institute of Neurological Disorders and Stroke before being appointed to his post at Columbia.

What else is there to know about this man, the first outsider to lead P&S in more than 70 years? P&S Journal conducted an interview approximately 150 days into his administration. His answers provide insight into his career development, the challenges he now faces as vice president and dean, why all members of the P&S family should care about a large strategic planning initiative under way, what it’s like to live in New York City again after all these years, and what beer and macadamia ice cream have to do with research and patient care.
Describe the first 150 days of your administration.

Gerald Fischbach: Busy. Hectic. The most complex set of challenges that I have faced. Doing research is complex and it’s all consuming but in any given time one is usually focused on one question or a small set of questions. Being a department chairman gave me experience in branching out in certain financial matters, teaching, and coordinating an active faculty. Directing an NIH institute was even more complex because national issues had to be considered while balancing priorities, but the institute was focused on research aspects of medicine and my job was to make choices among research priorities. Here, the priorities are multiplied to include educational issues and patient care issues as well as research. There are many different constituencies for each one of those issues—from the students and faculty to the university as a whole, to the hospitals that we work with, to the community. It’s taken me all these days just to get a glimpse of what the whole organism is like. Columbia is enmeshed in an important network of city, state, and national politics and policies. It’s been a busy and complex time, but it’s also been very energizing and very challenging. Although I’ve dwelled on the complexity, I do think it’s manageable. The advances we hope for can be made. It just takes persistence, great effort, and a will to believe.

You are leading a comprehensive strategic planning effort at P&S and the other Columbia Health Sciences schools. What do you hope to accomplish as faculty, staff, and students develop goals for improving the academic program and the physical plant?

We’re going to focus on overall excellence. We have a terrific faculty with islands of extraordinary excellence but there are many areas that can be improved. Medicine will change based on our...
own rapidly expanding knowledge of the human genome. That will increase our need to train students in genetics and information sciences. We may be doing less physical diagnosis than we have in the past. Both medical students and Ph.D. candidates need to be more aware of the biotechnology industry, about translating basic research into useful therapies, and how physicians and researchers are going to interact with industry. In terms of the faculty, I’d like to see a much more interactive faculty where there’s a lot more done across department boundaries, where the differences between them are minimized, where there’s much more communication between the pre-clinical and clinical departments.

We have urgent needs for space. The main reason that we lose students is inadequate housing. And the same is probably true for faculty. There is a desperate need for better research space and this very likely means more research space. Right now, the space is not well planned and it is not flexible. And the need for educational space is also urgent. Our space for teaching in small groups or in large lectures is not adequate. Finally, there is a growing fear that we will lose patients for lack of well-designed, convenient ambulatory care space. Altogether these needs make it worthwhile to plan. The space planning we’re doing in collaboration with the hospital is in some ways the easiest part because the goals are obvious and the needs are plain to see.

I want to make it clear that academic planning has its limits. Medical science is not a business, and we are not faced with a series of engineering problems. We don’t have all the answers so we must leave room for curiosity-driven research—the “what if” kind of research. We have to find the time to explore unexpected results. It is naive to claim that we have enough information to focus exclusively on translational research. Excellence, in the end, is the best way to capitalize on serendipity.

Why should P&S alumni—a neurosurgeon in Seattle or a cell biologist in North Carolina, for example—care about our strategic planning?

The quality of practice around the country depends on integrating advances in basic science with the practice of medicine. So the neurosurgeon in Seattle looks to academic health centers for improving the science and the art of her or his practice. One would hope that alumni look first to their alma mater. Our alumni are well informed and they will know whether this school is leading the pack in a given area and what goals we are moving toward. We are not planning for planning’s sake but we’re trying to define our mission and fulfill it. Many of the alumni, no matter where they are practicing around the world, have become leaders in their community. Several studies have shown that medicine is influenced by very few people in the community. If a practice is to change in neurosurgery most of the neurosurgeons in that area look to one or two major figures in their community and those people may have been trained here at Columbia. The cell biologist in North Carolina who obtained a Ph.D. from Columbia is very similar to the neurosurgeon. Habits of thought and experimental styles are set very early in one’s career. I hope that students who
are trained at Columbia remember the values they experienced here and the specific aspects of science that they began here.

And what would the parents of a medical student from Illinois get out of the strategic planning process?

Parents work hard to educate their children. They want Columbia to make as great an effort as possible to maintain the excellence of its educational and research programs. Our ongoing commitment to excellence will honor the parents, some of whom are spending their life savings while encouraging their dearest relatives to commit themselves to this school. It’s not easy to commit to the long, hard training period that medicine demands. It is important to give families of students a sense of pride in Columbia, a sense that we care about them, and that this school is a wonderful investment. More and more, medicine is a hard life. It is difficult to make the transition from student to physician. Everyone knows that, but few appreciate the equally important evolution in the student’s family. How do parents cope when they see their child facing innumerable stresses and tensions of facing life and death decisions every day?

Tell us about your family.

Ruth and I were married when I was at Cornell University Medical College and she was attending Cornell School of Nursing. While raising four extraordinary children and supporting a needy husband, she became a superb nurse, completed a master’s degree and a Ph.D. in medical sociology, and conducted important research in that area. She has become a leader in every community in which we’ve lived. Ruth built on her early training to develop great expertise in biomedical ethics, concentrating on physician-patient relationships, privacy, and issues at the end of life. She also developed successful programs on pain and suffering and on women’s issues in medicine. Ruth has been a wonderful partner in everything that I do.

Each one of our children has been inquisitive, fun-loving, and caring from their earliest days. They have all evolved into generous, mature individuals with great devotion to their families and to each other. Elissa’s remarkable creativity is now channeled in the field of interior design, and she is a near neighbor in New York City. Peter’s warmth and superb judgment serve him well as a pediatric cardiologist at the University of Michigan. Andrea, his wife and a source of energy and joy for us all, is a physical therapist. Neal’s talents are so diverse and they combine so easily that many paths remain open within medical oncology. Amy, his equally talented wife, is also in medical oncology with a special interest in AIDS. They are currently at UCSF. Mark became interested in art, design, and architec-
Ture in college, and he is now a gifted architect, perhaps the best one in the metropolitan area. Tristin, Mark’s wife, has opted for the academic life and recently joined the faculty at Seton Hall School of Law. At the moment, our children have rewarded us with 5.9 grandchildren, sources of great happiness and hope.

You have an M.D. but your career has focused on lab research. How did you become a scientist?

I went to medical school because I was interested in biology and research, and at that time the best way to do biomedical research was to go to medical school. I took one year off from medical school to study synaptic transmission at the neuromuscular junction. I worked in the Department of Pharmacology, whose faculty was known for their work on neuromuscular blocking agents. It was a transforming year for me because it was the first time that I felt I could do independent experiments and that I was good at it. I began to think critically about published work. Altogether, it was very different from the traditional medical education of the time. I didn’t publish anything from that work but I gained a tremendous amount of confidence that I could succeed, and I enjoyed doing it. When I returned to medical school I found that I also loved the clinical years. I interned at the University of Washington. Everything I learned in medical school seemed to come together, and we were very happy in the great Northwest. I was determined to get back into clinical medicine, and by then I was most interested in neurology. I was committed to the Public Health Service and to the National Institutes of Health, but I thought that after two years of research I would enter a neurology residency. But after two years I liked the research so much that I put off the residency for a year. Then I put it off for another year. And sometime in the fourth year—because things had gone so well and our family was thriving in Maryland—we decided to stay. It took me four years to decide that I was really going to focus on laboratory research. It was a long process, and this is an important lesson. In medical education, we must provide time to think and explore many options. I enjoyed medical practice and research. A student once told me, when I asked how he could drink beer and eat macadamia ice cream at the same time, “Well, you have to love them both.”

You’ve just finished your first alumni reunion weekend. How did it go?

It was great, but I confess that I resisted every step along the way. There were eight parties in one night and many different functions at which I had to make opening or closing remarks. But I enjoyed it all. The parties went from the Class of 1951 right up to a class that graduated five years ago. When you see that spectrum of people and see the love people have for this place, you real-
ize that it's a rather extraordinary place and worth working hard for it. It's really dramatic how one-shot learning lasts forever. Individual interactions with professors remain vivid memories recalled in detail after 50 years.

What memories do you have of medical school at Cornell?

A few people made an enormous difference. The quality of the faculty and of the students was excellent. But it was my own personal experience in the lab that I remember most clearly—being alone and in a quiet environment solving problems which seem very trivial now.

What is it like to live in New York City again?

Well, it's a different city than it was then. It's very exciting. I find the diversity in this city so energizing and wonderful—and natural. Both Ruth and I love it. We worried about the hubbub and the hectic pace of life but you get used to the hubbub if you put on filters. It is also a joy to be near children and grandchildren once again.

Tom Morris likes to say the D in Dean stands for Development. Tell us about your role in fund raising.

It is a very important function, and I enjoy it. I did a lot of it at Washington University, Harvard, and, in a sense, at the NIH. In St. Louis, which is a big small town, much of the philanthropy is local. We built centers for higher brain function and for molecular neurobiology. In Boston it was quite different as Harvard benefits from an international community. I think Columbia is somewhere between those two and has the opportunity of growth in both directions. Most donors are extremely interesting, creative, and discerning. It can be rewarding to learn about their interests and then develop a partnership with them. This is not a hit-and-run operation but an enduring relationship. If everything works, one makes two groups happy. The donor's family is proud and the school grows in stature.
Donations of the Paper Kind

Archives & Special Collections reports the following donations of materials from Winter 1999 through Spring 2001.

Dan E. Mayers: publications of his mother, the late May Rivkin Mayers’31, many of them in artistic bindings. She was a pioneer in industrial/occupational medicine.

J. Brooks Hoffman’43D: signed autograph letters (letters both written and signed) from J. Marion Sims, “the father of American gynecology,” on P&S stationery (1858); from John Wakefield Francis, a member of the Class of 1811 (the first graduating class of the College of Physicians & Surgeons, then not affiliated with Columbia) and a long-time member of the faculty (1859); and from an unidentified P&S student writing about his experiences in New York (1861).

Paul Marks’49: papers, largely correspondence, documenting his tenure as vice president of Health Sciences (1970-80) and dean of the Faculty of Medicine (1970-73). Also included are records relating to his service on the presidential commissions investigating biomedical research and the accident at Three Mile Island.

Emanuel Friedman’51: his papers, 1953-89, including research notebooks, articles and lectures, case reports, and other materials documenting his 35 years as a leading American obstetrician/gynecologist.

Paul Cushman’55: a late 19th century drug chest, probably manufactured in Britain.

Donald Harter’57: historical material relating to Aristides Agramonte and Jesse Lazear, 1892 P&S graduates and members of the U.S. Yellow Fever Commission.

Duncan Carpenter’78: videotape of original film from the 2nd General Hospital, the Presbyterian Hospital unit in Europe during World War II. His father, the late Malcolm Carpenter, a long-time professor of anatomy at P&S, donated the film. Duncan Carpenter paid for the transfer of the fragile film to more usable videotape.

Bard Cosman’87: plastic surgery case reports, 1960-62, submitted by his father, the late Bard Cosman’55, for board certification. The reports include notes, photographs, and drawings.

David Steinhardt (a 1944 Cornell medical school graduate): set of 45 surgical and obstetrical instruments belonging to his father, Irving David Steinhardt’06, and his father’s diploma.

Estate of Viola W. Bernard, clinical professor emeritus of psychiatry: more than 70 cubic feet of her papers, 1930-97. The collection extensively documents every facet of her long career as child psychiatrist, activist for children’s rights, Columbia faculty member, and a founder of the specialty of community psychiatry.

Rustin McIntosh Family: papers of the late Rustin McIntosh, chairman of pediatrics and director of Babies Hospital, 1931-60. Most of the papers date from his active retirement and include correspondence, articles and lectures, a diary, and records documenting his involvement with the Pediatric Research Council of what was then the National Institute for Neurological Diseases and Blindness. Drs. Michael Katz and John Truman helped facilitate the donation.

Gilbert W. Mellin, special lecturer in pediatrics: album of drawings proposed for a fund-raising brochure to solicit donations for construction of
Babies Hospital South in the 1960s and a list of rules for the Babies Hospital Library, undated but probably c. 1960.

Gabriel Nahas, professor emeritus of anesthesiology: papers documenting his career both in anesthesiology and as a researcher into the effects of narcotics.

Selina F. Little: papers of her great-grandfather, William Jarvie (1841-1921), a prominent Brooklyn dentist who persuaded his brother, James Jarvie, to make a $100,000 donation to the nascent Columbia dental school, allowing what is now the School of Dental and Oral Surgery to open in Fall 1916. Included are Dr. Jarvie’s casebooks, photographs of dental gatherings, letters from prominent 19th and early 20th century dentists, and printed and manuscript material documenting Dr. Jarvie’s involvement in professional organizations.

Chauncey G. Olinger Jr.: phonograph records of an unidentified medical school musical performance. Mr. Olinger retrieved them from the trash when he was manager of Bard Hall in the 1960s.

Fritz Stern, University Professor Emeritus of History: 166 volumes of German medical books, pamphlets, and reprints, 1814-1949, including works by Ehrlich, Skoda, Virchow, and Vogt. The books belonged to his grandfather and father, both physicians in Breslau, Germany, and were brought by the family when they immigrated to the United States in the 1930s.

New York-Presbyterian Hospital Department of Epidemiology: photo album of scenes from the groundbreaking, construction, and dedication of the medical center, 1925-29.

New York-Presbyterian Hospital Office of Public Affairs: 47 volumes of scrapbooks and 90 binders of newspaper clippings documenting the Columbia-Presbyterian Medical Center, 1912-88; two photo albums documenting the construction of the medical center, 1925-30; and more than 500 photos, c.1900-1980s, covering a wide variety of topics.

Among the items donated to Archives & Special Collections are a late 19th century drug chest, phonograph records of an unidentified medical school musical performance, and a videotape of original film from the 2nd General Hospital, the Presbyterian Hospital unit in Europe during World War II.

New York-Presbyterian Hospital Department of Health Information Management: about 150 cubic feet of patient records from Presbyterian, Babies, Sloane, Vanderbilt, New York Orthopedic, Neurological Institute, and Herman Knapp Memorial, 1860s-1950s.
The center of the fashion world moved uptown from Manhattan’s Seventh Avenue to Bard Hall at P&S . . . at least for one day.

What began as a simple poetry reading turned into an elaborate and original fashion show—even by fashion industry standards—created by Peter “Jeff” Nicholls’02. Unlike any other runway event, “Sexy in Scrubs”—as the show was billed—featured clothes fashioned entirely from items worn by doctors. The April Coffeehouse Cabaret entertained P&S students and accepted P&S candidates who were participating in Revisit Day, the annual event that gives accepted applicants another look at P&S. The costumes were auctioned off with all proceeds going to Operation Smile, a not-for-profit volunteer medical services organization that provides reconstructive surgery and related health care to indigent children and young adults in developing countries and the United States.

“My original idea was to read a John Donne poem while various characters acted out the poem behind me,” says Mr. Nicholls of his presentation for one of the more eclectic performance groups of the P&S Club. “Then I got the idea that it would be really interesting to recite the poem while characters acted out a mock fashion show. Finally, it was decided that the best idea would be to organize a genuine fashion show using medical materials. The poem, which started it all, was dropped.”

Staging a fashion show required teamwork, and Mr. Nicholls found no shortage of volunteers as eager as they are creative. Lauren Helm’03 and Deirdre Sawinski’03 were critical to the effort. Ms. Helm, a former model, lent her experience with the details of running a fashion show, while Ms. Sawinski called on her undergraduate studies of art history to sketch several of her own designs. Kate Malin-Smith, administrator of the P&S Club, supplied the short student-length white coats. Adam Car-

“RED” DRESS

Deirdre Sawinski’03 wore one of her own designs. After a white coat was cut to the shape of a dress, it was dyed deep red. The result, however, was a lighter, coral shade.

ADVERTISEMENT

An unlikely pair of sources inspired this design: Louis Vuitton and NASCAR. Deirdre Sawinski used acrylic paint to decorate the outfit worn by Maja Castillo’04. The lettering on the skirt and top, which are made from scrubs, mimic the style of Louis Vuitton bags, while the white coat, which was dyed canary yellow, was painted to look like NASCAR advertising. Design by Jeff Nicholls.
rey, an actor and friend of Mr. Nicholls, helped locate many of the props and accessories from costume and military surplus stores in Soho and Greenwich Village. Inexpensive scrubs and full-length clinician white coats were purchased at a uniform store.

With materials and designs, Mr. Nicholls spent his spring break “running a sweatshop” at his mother’s house in West Bloomfield, Mich. “My mom and sister pretty much sewed for three days non-stop. They did all the hems, seams, buttons, zippers, and pockets,” he says. In addition to the sewing, scrubs and white coats were dyed, shredded, written on, and even burned. “I also tried to bleach the scrubs” he says. “I tried straight bleach, RIT color-removal products, even boiling. For some reason, scrubs never lose their color. So any scrubs that were dyed were dyed darker than the original.”

Ms. Helm and Ms. Sawinski ran the show, which included choosing the runway order, selecting music, and styling hair and makeup for the P&S models. Tim Vogel ’04 handled the audio for the show. The Arnold P. Gold Foundation and the P&S Club paid for all costs, from materials to refreshments. The foundation’s generosity plus the voluntary creative efforts of students allowed 100 percent of the proceeds to go to charity.

“Because the crowd was mainly made up of medical students and students participating in Revisit Day, we didn’t expect there to be much bidding,” explains Mr. Nicholls. “In fact, we planted people in the audience to bid on any costumes that nobody wanted. But we never needed them. All the pieces were purchased, and we were able to give $400 to Operation Smile.

“We wanted to do something fun and interesting, and we really wanted to impress the students coming for Revisit Day—show them how creative and diverse our activities are at P&S. Raising money for charity made it that much better.”

EXOTIC
Angela Penn’04 wore a long skirt, fashioned from scrub pants that were cut open, turned around, and re-seamed. She is carrying a clinician-length white coat with gold buttons and an umbrella from a costume shop. Design by Deirdre Sawinski.

TUXEDO
Mike Gallo’03 wore a student-length white coat, cropped and re-seamed in the shape of a vest. A clinician-length white coat was used for the tuxedo jacket. The shirt, pants, and ascot were made from scrubs. Mr. Gallo supplied the top hat and cane. Design by Jeff Nicholls.

HAIRNETS
Kate Malin-Smith, administrator of the P&S Club, wore an outfit made from 200 hairnets. The hairnets were tied together end-to-end then looped around a line of twine. The line was then wrapped around Ms. Malin-Smith’s waist in the dress shape. The dress was designed by Jeff Nicholls, the hat by Lauren Helm.
P&S Distinguished Service Awards were presented to Dr. Norman Kahn, the Robinson Professor Emeritus of Dental and Oral Surgery and professor emeritus of pharmacology, and Dr. Lewis P. Rowland, professor of neurology and past longtime chairman of neurology. (Dr. Kahn could not attend the ceremony.)

Charles W. Bohmfalk Awards were presented to Dr. Katherine G. Nickerson, associate professor of clinical medicine, for distinguished teaching in the pre-clinical years, and Dr. Spencer E. Amory, associate clinical professor of surgery and division chief at the Allen Pavilion, for distinguished teaching in the clinical years.

The Stevens Triennial Prize was presented to George D. Yancopoulos’86 (Ph.D.) and ’87 (M.D.), adjunct professor of microbiology and president of Regeneron Research Laboratories in Tarrytown, N.Y.

The Arnold P. Gold Foundation Award was given to Kenneth A. Forde’59, the José Ferrer Professor of Clinical Surgery.

The Dr. Harold and Golden Lamport Research Award in basic sciences was given to Dimitrios Thanos, assistant professor of biochemistry and molecular biophysics. Dr. Angela M. Christiano, associate professor of dermatology and of genetics and development, received the Dr. Harold and Golden Lamport Research Award in clinical sciences.

The Distinguished Teacher Award was given by the Class of 2001 to Dr. Spencer E. Amory, associate clinical professor of surgery. (See profile, Page 30.)
S T U D E N T P R I Z E S
A N D A W A R D S

Dr. Harry S. Altman Award (outstanding achievement in pediatric ambulatory care)
 Nancy Haas Hillis
Alumni Association Award (outstanding service to P&S)
 Erin L. Hickey
Virginia P. Apgar Award (excellence in anesthesiology and intensive care)
 David J. Batal
Carl K. Gjertson
Michael H. Aranow Memorial Prize (best exemplifying the caring and humane qualities of the practicing physician)
 David Jeffrey Kopman
Herbert J. Bartelstone Award (exceptional accomplishments in pharmacology)
 Mark Justin Roggeveen
Alvin Behrens Memorial Fund Award (outstanding graduate entering ophthalmology)
 Jenny E. Hong
Edward T. Bello, M.D., Listening Award (to a graduating student who best portrays the art of listening to patients, colleagues, and self in practicing the chosen field of medicine)
 Joshua C. Vessey
Robert G. Bertsch Prize (emulating Dr. Bertsch’s ideals of the humane surgeon)
 Daniel C. Wiener
Coakley Memorial Prize (outstanding achievement in otolaryngology)
 Matthew B.A. Patterson
Titus Munson Coan Prize (best essay in biological sciences)
 Jonathan Howard Lin
Christopher Yongchul Park
Thomas F. Cock Prize (excellence in obstetrics and gynecology)
 Stephanie H. Newman
Rosamond Kane Cummins’s52 Award (graduate entering orthopedics with academic excellence, sensitivity, kindness, devotion to patients, and the fine human qualities she exemplified)
 Steven Anthony Aviles
Dean’s Award for Excellence in Research, Graduate School of Arts and Sciences at P&S:
 Scott C. Kachlany
 Xiaolan Zhao
Gate Pharmaceuticals Award (excellence in obstetrics/gynecology)
 Rebecca Hathaway Allen
Frederick P. Gay Memorial Award (achievement in microbiology)
 Yi Lin
Arnold P. Gold Foundation Award (excellence in science and compassion in patient care)
 Michelle Grotz-Rhone
Dr. Charles F. Hamilton Award (excellence in pulmonary disease)
 Patrick Lavin Archdeacon
Janeway Prize (the highest achievement and abilities in the graduating class)
 Daniel C. Wiener
Albert B. Knapp Scholarship (awarded at the conclusion of the third year to the medical student with highest scholarship in the first three years)
 Stephanie H. Newman
John K. Lattimer Prize in Urology (outstanding essay in urology)
 Carl K. Gjertson
Barbara Liskin Memorial Award in Psychiatry (empathy, scholarship, and excellence exhibited by Barbara Liskin)
 Jennifer M. Fellowes
Robert F. Loeb Award (excellence in clinical medicine)
 John A. Dooley
F. Lowenfish Prize in Dermatology (creative research in dermatology)
 Adam Ian Rubin
Admiral David Willard Lyon Award (outstanding academic achievement by a student serving in the U.S. armed forces)
 Matthew B.A. Patterson
Dr. Cecil G. Marquez, B.A.L.S.O. Student Award (outstanding contribution to the Black and Latin Student Organization and the minority community)
 Emiliano Raul Chavira
Edith and Denton McKane Memorial Award (outstanding research in ophthalmology)
 Jenny E. Hong
Medical Society of the State of New York Award (outstanding community service)
 Amy Joanna Auslander
Dr. Harold Lee Meierhof Memorial Prize (outstanding achievement in pathology)
 Frank Samuel David
Drs. William Nastuk, Beatrice Seeagal, and Konrad Hsu Award (demonstrated successful laboratory collaboration between student and faculty)
 Joseph R. Osborne
Marie Nercessian Memorial Award (exhibiting care, unusual concern, and dedication to helping sick people)

Patrick M. Bolt

New York Orthopedic Hospital Award (outstanding performance in research and clinical work)

Margaret J. Lobo

Joseph Garrison Parker Award (exemplifying, through activities in art, music, literature, and the public interest, that living and learning go together)

Kathryn Roye Gipstein

Samuel W Rover and Lewis Rover Awards (for outstanding achievement) in:

Anatomy and Cell Biology—

Derrick C. Wan

Biochemistry and Molecular Biophysics—

Deborah J. Stauber

Genetics and Development—

Xiaolan Zhao

Physiology and Cellular Biophysics—

Mark Justin Roggeveen

Rebecca A. Schwartz Memorial Prize (achievement in pediatric cardiology)

Melinda Jane Braskett

Helen M. Sciarra Prize in Neurology (outstanding achievement in neurology)

Gaurav D. Shah

Aura E. Severinghaus Scholar (superior academic achievement)

Evelyn Berger

Miriam Berkman Spotnitz Award (excellence in research of neoplastic diseases)

Pang-Dian Fan

William Perry Watson Prize in Pediatrics (excellence in pediatrics)

Evelyn Berger

Dr. William Raynor Watson Memorial Award (excellence in psychiatry throughout four years of medical school)

Christine E. Wittmann

Dr. Allen O. Whipple Memorial Prize (outstanding performance in surgery)

Carl K. Gjertson

Sigmund L. Wiens Prize (excellence in pathology)

Mark Justin Roggeveen

Residency Match 2001

Anesthesiology

- David J. Batal Mount Auburn Hospital, Cambridge, Mass. medicine-prelim
 - Mass Gen anesthesiology
- Andrew H. Kim MGH/Brigham & Women's Hospital, Boston transitional anesthesiology
- David J. Kopman St. Vincent’s, NY medicine-prelim
 - Cornell anesthesiology

Dermatology

 - Cornell dermatology
- Adam I. Rubin CPMC medicine-prelim
 - dermatology
 - Univ of Colo, Denver dermatology

Emergency Medicine

- John A. Curtis MCP Hahnemann, Philadelphia emergency medicine
- Fared N. Fareed NYU emergency medicine
- Andrew W. Goffin SUNY Brooklyn emergency medicine
- Jamie G. Tissel Albany Med Ctr emergency medicine
- Jose D. Torres NY Hospital, Queens medicine-prelim
 - Einstein/Jacobi emergency medicine
- Richard C. Tepp Yale-New Haven emergency medicine
- Nancy M. Vinca Univ of Pa. emergency medicine
- Kurt T. Whitaker Univ of Colo, Denver medicine-prelim
 - Denver Health Med Ctr emergency medicine

Family Practice

- Mary K. Gaynor Univ of Washington, Seattle family practice
- Sarah E. Mattson Contra Costa Reg Med Ctr, Martinez, Calif. family practice

Medicine

- Patrick L. Archdeacon CPMC medicine
- Ana T. Blohm Mount Sinai medicine
- Michael J. Brucoleri Cornell medicine
- Christopher J. Bruno Univ of Pa. medicine
- James C. Brust CPMC medicine-prelim
- Rose S. Cohen CPMC medicine
- Katharine C. Dahl CPMC medicine
- Moupalis C. CPMC medicine
- Robert F. DeMayo Yale-New Haven medicine
- John Dooley Johns Hopkins medicine
- Geoffrey K. Dube Beth Israel Deaconess, Boston medicine
- Pang-Dian Fan CPMC medicine-prelim
 - *Robin C. Flaim CPMC medicine-prelim
- Kimberly A. Ferde CPMC medicine
- Christopher M. Frank CPMC medicine
- Noelie V. Frey Univ of Pa. medicine
- Jason P. Gonsky Northwestern Univ, Chicago medicine
- William R. Harris Univ of Washington, Seattle medicine
- *Hau Liu Stanford Univ medicine
- Matthew J. Hillis Univ of Pa. medicine
- Deborah P. Jones CPMC medicine
- Sarah F. Leibo Brown Univ medicine
- Chris Fe-Yong Liu CPMC medicine
- Sara E. Ogdon Univ of Colo, Denver medicine
- Yvonne M. Saenger CPMC medicine
- Amardeep S. Saluja CPMC medicine
- Rebecca P. Shetter CPMC medicine
- Marshall Thorstensen Univ of Pa. medicine
- Georgianne M. Vail Mount Sinai medicine
- Joshua C. Vessey UCSF medicine
- Serena T. Wong Einstein/Montefiore medicine

Medicine-preliminary

- *Kathy P. An Brown Univ medicine-preliminary
- Gary Chen Washington Univ, St. Louis medicine-preliminary
- Michele L. Rosenbaum Yale-New Haven medicine-preliminary

* Class of 2000 graduates participating in the 2001 match
Medicine-Primary Care

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayla M. Ennis</td>
<td>Johns Hopkins Bayview</td>
</tr>
<tr>
<td>Michelle M. M. Altman</td>
<td>Cornell</td>
</tr>
<tr>
<td>Annette W. van der Hoeven</td>
<td>NYU</td>
</tr>
</tbody>
</table>

Neurology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin C. Brennan</td>
<td>George Washington Univ</td>
</tr>
<tr>
<td>Alexander Flint</td>
<td>CPMC</td>
</tr>
<tr>
<td>Mary Alice C. Nally</td>
<td>Lenox Hill</td>
</tr>
<tr>
<td>Gaurav D. Shah</td>
<td>CPMC</td>
</tr>
<tr>
<td>Anne Marie A. Wills</td>
<td>Mount Auburn Hospital, Cambridge, Mass. Gen</td>
</tr>
</tbody>
</table>

Neurosurgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Chi</td>
<td>UCSF</td>
</tr>
<tr>
<td>William Mack</td>
<td>CPMC</td>
</tr>
</tbody>
</table>

Obstetrics/Gynecology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebecca H. Allen</td>
<td>Brigham & Women's</td>
</tr>
<tr>
<td>Lorena Rainaldes</td>
<td>Barnes-Jewish, St. Louis</td>
</tr>
<tr>
<td>Emiliano R. Chavira</td>
<td>USC</td>
</tr>
<tr>
<td>Mary A. Denman</td>
<td>Univ. of Pa.</td>
</tr>
<tr>
<td>Kristine M. King</td>
<td>New England Med Ctr, Boston</td>
</tr>
<tr>
<td>Russell S. Miller</td>
<td>CPMC</td>
</tr>
<tr>
<td>Malory M. Zhang</td>
<td>Stanford Univ</td>
</tr>
</tbody>
</table>

Orthopedic Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven A. Aviles</td>
<td>CPMC</td>
</tr>
<tr>
<td>Patrick M. Bolt</td>
<td>Univ. of Chicago</td>
</tr>
<tr>
<td>David V. Catesen</td>
<td>Harvard</td>
</tr>
<tr>
<td>Alexander C. Ching</td>
<td>Thomas Jefferson Univ, Philadelphia</td>
</tr>
<tr>
<td>Jason Y. Ho</td>
<td>Northwestern Univ, Chicago</td>
</tr>
<tr>
<td>Winton R. J. Ishuraan</td>
<td>Albany Med Ctr</td>
</tr>
<tr>
<td>Christina A. Kabbash</td>
<td>Mount Sinai</td>
</tr>
<tr>
<td>Margaret J. Lobo</td>
<td>Thomas Jefferson Univ</td>
</tr>
<tr>
<td>Themistocles Peptopsis</td>
<td>CPMC</td>
</tr>
<tr>
<td>Kenneth J. Wicker</td>
<td>CPMC</td>
</tr>
<tr>
<td>Mark F. Schindler</td>
<td>Barnes-Jewish, St. Louis</td>
</tr>
<tr>
<td>Sanjeev J. Surabala</td>
<td>CPMC</td>
</tr>
<tr>
<td>Marion S. Ward</td>
<td>St. Luke's-Roosevelt</td>
</tr>
</tbody>
</table>

Otolaryngology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthew Patterson</td>
<td>U.S. Navy, San Diego</td>
</tr>
</tbody>
</table>

Pathology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank S. David</td>
<td>Brigham & Women's, Boston</td>
</tr>
<tr>
<td>Jonathan H. Lin</td>
<td>Brigham & Women's</td>
</tr>
<tr>
<td>Christopher Y. Park</td>
<td>Stanford Univ</td>
</tr>
</tbody>
</table>

Pediatrics

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Z. Antone</td>
<td>Wayne State Univ/Detroit Med Ctr</td>
</tr>
<tr>
<td>Amy J. Auslander</td>
<td>Children's Hospital, Oakland, Calif.</td>
</tr>
<tr>
<td>Evelyn Berger</td>
<td>CPMC</td>
</tr>
<tr>
<td>Melinda J. Dravett</td>
<td>Children's Hospital, Los Angeles</td>
</tr>
<tr>
<td>Kimberly F. Brown</td>
<td>CPMCC</td>
</tr>
<tr>
<td>Erika D. Fitzpatrick</td>
<td>Children's Hospital, Washington, D.C.</td>
</tr>
<tr>
<td>Christopher J. Gummer</td>
<td>Johns Hopkins</td>
</tr>
<tr>
<td>Steven M. Gospelin</td>
<td>Children's Hospital, Philadelphia</td>
</tr>
<tr>
<td>Danielle C. Goodman</td>
<td>Johns Hopkins</td>
</tr>
<tr>
<td>Sasha M. Gubser</td>
<td>Johns Hopkins</td>
</tr>
<tr>
<td>Erin L. Hickey</td>
<td>Univ Hospistals, Cleveland</td>
</tr>
<tr>
<td>Nancy M. Hills</td>
<td>Children's Hospital, Philadelphia</td>
</tr>
<tr>
<td>Stephen J. Maddox</td>
<td>NYU</td>
</tr>
<tr>
<td>Laurie A. Pane</td>
<td>Children's National Med Ctr</td>
</tr>
</tbody>
</table>

Physical Medicine & Rehabilitation

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audra D. Schweitzer</td>
<td>CPMC</td>
</tr>
<tr>
<td>Anita I. Sen</td>
<td>Mount Sinai</td>
</tr>
<tr>
<td>Hemant P. Shaha</td>
<td>Duke</td>
</tr>
<tr>
<td>Alan E. Simon</td>
<td>Children's National Med Ctr</td>
</tr>
<tr>
<td>Michael J. Smith</td>
<td>Brown Univ</td>
</tr>
<tr>
<td>Alexis A. Topjian</td>
<td>Children's Hospital, Philadelphia</td>
</tr>
<tr>
<td>Sameer Upadhyay</td>
<td>CPMC</td>
</tr>
<tr>
<td>Aimee F. University</td>
<td>Baylor</td>
</tr>
</tbody>
</table>

Plastic Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joyce K. Aycock</td>
<td>Univ. of Chicago</td>
</tr>
<tr>
<td>Michael W. Chen</td>
<td>Yale-New Haven</td>
</tr>
</tbody>
</table>

Psychiatry

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebouy Belay</td>
<td>Brown Univ</td>
</tr>
<tr>
<td>Allegra I. Broth</td>
<td>CPMC</td>
</tr>
<tr>
<td>Daniel C. Chranowski</td>
<td>CPMC/Stanford</td>
</tr>
<tr>
<td>Laurence Colman</td>
<td>Oregon Health & Science Univ</td>
</tr>
<tr>
<td>Justin R. Donovan</td>
<td>Cornell/Payne Whitney</td>
</tr>
<tr>
<td>Jennifer M. Fellowes</td>
<td>CPMC</td>
</tr>
<tr>
<td>Raymond D. Heavey</td>
<td>UCSF</td>
</tr>
<tr>
<td>Sara H. Niegro</td>
<td>Long Island Jewish</td>
</tr>
<tr>
<td>Christine E. Wittmann</td>
<td>CPMC</td>
</tr>
</tbody>
</table>

Radiation Oncology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maira G. Wiesman</td>
<td>St. Luke's-Roosevelt</td>
</tr>
</tbody>
</table>
| *Class of 2000 graduates participating in the 2001 match*

Radiology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conrad C. Cassie</td>
<td>Mount Sinai/Queens</td>
</tr>
<tr>
<td>Jennifer M. Cutts</td>
<td>Maine Med Ctr</td>
</tr>
<tr>
<td>Charles B. Coffee</td>
<td>Boston Deaconess, Boston</td>
</tr>
<tr>
<td>Joseph R. Osborne</td>
<td>Washington Hospital, D.C.</td>
</tr>
<tr>
<td>Mark J. Roggeveen</td>
<td>St. Luke’s-Roosevelt</td>
</tr>
<tr>
<td>Victor Shin</td>
<td>North Shore Univ, Long Island</td>
</tr>
</tbody>
</table>

Research

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olguin Guenchez</td>
<td>Columbia Dept. of Chemistry</td>
</tr>
</tbody>
</table>

Surgery

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristen C. Hansen</td>
<td>New England Med Ctr, Boston</td>
</tr>
<tr>
<td>Charles Y. Kim</td>
<td>Yale-New Haven</td>
</tr>
<tr>
<td>Amanda D. Kendis</td>
<td>Santa Barbara Cottage, California</td>
</tr>
<tr>
<td>Peter K. Lee</td>
<td>Univ. of Minnesota</td>
</tr>
<tr>
<td>Jonathan D. McCue</td>
<td>Univ. of Minnesota</td>
</tr>
<tr>
<td>Ariel U. Spencer</td>
<td>Univ. of Chicago</td>
</tr>
<tr>
<td>Derrick C. Wan</td>
<td>NYU</td>
</tr>
<tr>
<td>Daniel C. Wiener</td>
<td>Dartmouth-Hitchcock</td>
</tr>
<tr>
<td>Sean M. Yetman</td>
<td>NYU</td>
</tr>
</tbody>
</table>

Surgery-Preliminary

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yi Lin</td>
<td>CPMC</td>
</tr>
<tr>
<td>Vinish K. Mathur</td>
<td>Cornell</td>
</tr>
<tr>
<td>Rawland Robinson</td>
<td>Mount Sinai</td>
</tr>
</tbody>
</table>

Transitional

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracy L. Chamberlain</td>
<td>Camery Hospital, Boston</td>
</tr>
</tbody>
</table>

Urology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carl Gjerston</td>
<td>CPMC</td>
</tr>
<tr>
<td>Jeffrey S. Montgomery</td>
<td>Univ. of Michigan</td>
</tr>
</tbody>
</table>
Members of the graduating class of the year 2001, relatives and friends of the graduates, Dean Gerald Fischbach, colleagues, ladies and gentlemen:

I am extremely pleased to be asked to participate in the commencement today because it gives me the opportunity of celebrating the academic achievements of this college and of this class. I owe this college an enormous personal and scientific debt! I have found this medical school to be the very best place in the world to do scientific research, and I have benefited greatly from the interactive and supportive environment engendered by the faculty and students of this school. In addition, throughout my 27 years on this faculty, I have always enjoyed teaching medical and graduate students at P&S including, of course, the privilege of teaching the distinguished class we celebrate today. In fact, “Principles of Neural Science,” the textbook that your class has come to know and love—which is now universally acknowledged to be the heaviest and most expensive textbook of its kind—is based on the neural science course our faculty teaches here at this college, a course for which I was privileged to serve as first course director.

So when I am asked to what do I aspire after receiving the Nobel Prize in the year 2000, my answer is clear: to be selected, by the graduating class of the year 2001, to give the convocation address at the College of Physicians & Surgeons of
Columbia University! What more meaningful and satisfying recognition can one ever imagine? For no celebration is more satisfying for this college or more inspiring to the intellectual community throughout the world, than an academic commencement. For each commencement celebrates the entry into academic ranks of another class of scholars. Since the task of a great university is not simply to replicate its own image in scholarship but to create new knowledge, it is implicit in the charge to a faculty to develop scholars who are better than we are, more knowledgeable, more thoughtful, more moral, finer human beings.

Given that we think you are all of these things, what is there left to tell you as you now progress from being our students to being our peers? What are you likely to confront as you move into the next stage of your life? And, in turn, what can we expect of you in that confrontation? Let me put these questions, and your past four years in medical school, into a bit of a historical perspective.

Revolution in Genomics

The years you have spent in medical school—the remarkable four years that spanned the transition from the 20th to the 21st century—have produced both the elucidation of the human genome and an increased understanding of the biology of the human brain. We have every reason to expect that the revolution in genomics and in brain science will radically change the way we practice medicine. And it will do so in two ways. First, medicine will be transformed from a population-based to an individual-based medical science; it will become more focused on the individual and his or her predisposition to health and disease. Second, we will, for the first time, have a meaningful and nuanced biology of human mental processes and human mental disorders. If we are fortunate, your generation will help join these two intellectual streams—that of the human genome and that of brain science—to realize biology’s aspiration for a new humanism, a humanism based in part on insights into our biology. If we are successful in advancing this new humanistic agenda, the genomic revolution and the new insights into the biological nature of mind will not only enhance medical care but will also change fundamentally the way we view ourselves and one another.

The influence of biology on the way informed people think about each other and about the world in which they live is, of course, not new. In modern times this influence first became evident in 1859 with Darwin’s insight into the evolution of species. Darwin first argued that human beings and other animals evolved gradually from animal ancestors quite unlike themselves. He also emphasized the even more daring idea, that the driving force for evolutionary change stems not from the heavens, not from a conscious purpose, but from natural selection, a completely mechanistic, sorting process based on hereditary variations.

This radical idea split the bond between religion and biology, a bond based on the idea that an important function of biology was to explain divine purpose—to account for the overall design of nature. Indeed, natural selection even caused difficulty for non-believers because it was vague as a scientific idea.

To understand hereditary variations, scientists first needed to know: How is information about biological structure passed from one generation to another? This question was answered only in the first decades of the 20th century. We owe first to Gregor Mendel and then to Thomas Hunt Morgan (of our own Columbia University) the remarkable discovery that hereditary information necessary to specify the construction of the organism is passed from one generation to the next by means of discrete biological structures we now call genes. Forty years later, first Avery, McCarthy and McCloud and subsequently Watson and Crick gave us the seminal insight that the genes of all living organisms are embodied in the physics and chemistry of a single large molecule, DNA. Nature, in all its beauty and variety, results from variations in the sequence of bases in DNA.

In the 1960s and 1970s our understanding of genes was further enhanced by the cracking of the genetic code, the three-letter alphabet whereby the sequence of bases in DNA is translated into the amino acids of a protein. This breakthrough was followed by DNA sequencing, which allowed us to read directly the nucleotide sequences that form the instructions of each gene. Creative application of these and other molecular insights made possible...
genetic engineering and more recently the sequencing of the human genome.

Personalized Medicine

Your generation will be the first to reap the benefits of the human genome and use its insights not only to provide better care to patients—better diagnoses, better treatment—but, also, I would hope, more individualized care, more individually tailored diagnoses, and more individualized treatment. Indeed, I would hope that your generation will move us away from the impersonality of managed health care into a new, biologically inspired personalized medicine.

What reason do we have to believe that this will come to pass? What will we learn from the genome that might orient us more to see the patient as a person rather than as a disease state? The genome of course provides us with a periodic table of life. It contains the complete list and structure of all genes. But it provides us not simply with an average-expectable genome. It provides each of us with our own unique genome. In time, our genome will be a part of our private medical record. As a result, we in academic medicine will collectively have a catalog of all the human genetic variations that account for all the heritable differences between individuals.

We now know that any two individuals share an amazing 99.9 percent DNA sequence similarity. This means that all the heritable differences among individuals of a species can be attributed to a mere 0.1 percent of the sequence. Most differences between the genomes of any two individuals take the form of very small changes, where one single base is substituted for another in the sequence of nucleotides that form a gene. These changes are called single base changes or single nucleotide polymorphisms.

We already know of about 3 million such polymorphisms, and more will be identified with time. They are spread throughout the genome and at least 93 percent of all genes contain at least one such polymorphism. Thus, for the first time, we will have for every gene all the polymorphic sequence variations that exist. Many of these will prove unimportant, but some of them will be fundamental to understanding disease.

These common, polymorphic variations differ fundamentally from the rare mutations that lead invariably to inherited disease and that have been the focus of medical genetics up to now. The common polymorphisms that we now will have full access to for the first time do not cause disease per se; rather they influence the expression of disease; they predict our predisposition to, and our protection from, disease in all of its manifestations.

To give but one example, there are rare genetic mutations on chromosome 21 that invariably cause an early onset form of Alzheimer’s disease in the rare person that carries the mutation. By contrast, there is a fairly common polymorphism that does not produce Alzheimer’s disease directly. But the 17 percent of the population that carry this single base change polymorphism have a 10 times greater risk for developing a late onset form of Alzheimer’s disease than those individuals that do not carry this polymorphism. Other genetic polymorphisms similarly predispose people to various forms of diabetes, hypertension, cancer, and mental disorders. Indeed every disease to which we are prone—including our response to infection, to the consequences of aging, and even our very longevity itself—will be shown to be influenced by polymorphisms in our genes. As a corollary the polymorphisms also will help reveal that complex diseases such as hypertension, depression, and Alzheimer’s disease are likely not to be unitary but to be made up of a number of different, intricately related subtypes, each requiring its own distinctive medical management.
What will knowledge of these predispositions and subtypes mean for the practice of clinical medicine? This knowledge will serve to decrease the uncertainty in the management of disease. It is likely that clinical DNA testing—the search for genetic polymorphisms in ourselves and in our patients—will reveal our individual risk for all major diseases, and therefore allow us to intervene prophylactically in these diseases through diet, surgery, exercise, or drugs, years before the disease becomes manifest. Indeed, genetic polymorphisms will be found to underlie the way our patients respond to these interventions, so that DNA testing will also allow us to predict individual responses to drugs and to determine the degree to which individuals are susceptible to particular side effects. This will allow the pharmaceutical industry to develop new targets and new tools to sharpen the specificity of the drugs they deliver to meet the needs of the individual patient.

This knowledge of the biological uniqueness of our patients will alter all aspects of medicine. Currently, newborn babies are only screened for treatable genetic diseases, such as phenylketonuria. Perhaps in the not too distant future, children at high risk for coronary artery disease, Alzheimer’s, and multiple sclerosis will be identified and treated to prevent changes occurring later in life. For middle-aged and older people, you will be able to determine the risk profiles for numerous late-onset diseases; ideally people at risk will know of their risk before the appearance of symptoms, so that their disease might, at least, be partially prevented through medical intervention.

The Biological Basis of Uniqueness

This new emphasis on the biological basis of uniqueness, encouraged by the human genome, brings me to my second point. Our uniqueness is reflected, in its highest form, in the uniqueness of our mind, a uniqueness that emerges from the uniqueness of our brain. Now that we understand natural selection and the molecular basis of heredity, it has become clear that the last great mystery that confronts biology is the nature of the human mind. This is the ultimate challenge, not just for biology, but for all of science. It is for this reason that many of us believe that the biology of the mind will be for the 21st century what the biology of the gene was for the 20th century.

The biology of mind represents the final step in the philosophical progression which began in 1859 with Darwin’s insights into evolution of bodily form. Here, with the biology of mind, we are confronted with the even more radical and profound realization that the mental processes of humans also have evolved from animal ancestors and that the mind is not ethereal but can be explained in terms of nerve cells and their interconnections.

One reason that people have difficulty altering their view of the mind is that the science of the brain, like all experimental science, is at once mechanistic in thought and reductionist in method. We have become comfortable with the knowledge that the heart is not the seat of emotions but a muscular organ that pumps blood through the circulation. Yet some of us still find it difficult to accept that what we call mind is a set of functions carried out by the brain, a computational organ made marvelously powerful not by its mystery but by its complexity, by the enormous number, variety, and interactions of its building blocks, its nerve cells. We find it difficult to accept that what we call mind is a set of functions carried out by the brain, a computational organ made marvelously powerful not by its mystery but by its complexity, by the enormous number, variety, and interactions of its building blocks, its nerve cells. We find it difficult to accept that every mental process, from our most public action to our most private thought, is a reflection of biological processes in the brain.

With modern imaging and cellular biological studies of brain, we are now beginning to understand aspects of both our public actions and our private thoughts: We are beginning to understand how we perceive, act, feel, learn, and remember. And the insights we so far have obtained are truly remarkable! For example, these studies show that the brain does not simply perceive the external world by replicating it, like a three-dimensional photograph. Rather, the brain reconstructs reality only after first analyzing it into component parts. In scanning a visual scene, for example, the brain analyzes the form of objects separately from their movement, and both separately from the color of the objects, all before reconstituting the full image again, according to the brain’s own rules. Thus, the belief that our perceptions are precise
and direct is an illusion. We re-create in our brain the external world in which we live.

We now appreciate that simply to see—merely to look out into the world to recognize a face or to enjoy a landscape—entails an amazing computational achievement on the part of the brain that no current computer can even begin to approach. All of our perceptions and actions—seeing, hearing, smelling, touching, or reaching for a glass of water—are analytic triumphs.

In addition to creating our perceptions and actions our brain provides us with a sense of awareness, it creates for us a historical record, a consciousness not only of ourselves but of the world around us. Within the family of deep problems that confront the study of mind, the biology of consciousness must surely rank at the very top.

The brain can achieve consciousness of self, and can perform remarkable computational feats because its many components, its nerve cells, are wired together in very precise ways. Equally remarkable, we now know that the connections between cells are not fixed, but can be altered by experience, by learning. The ability of experience to change connections in our brain means that the brain of each person in this audience is slightly different from the brain of every other person in this audience because of distinctive differences in our life history. Even identical twins, with identical genomes, will have slightly different brains because they will invariably have been exposed to somewhat different life histories.

The Individuality of Mental Life

It is very likely that during your careers brain imaging will succeed in resolving these unique differences our brain. We will then have, for the first time, a biological foundation for the individuality of our mental life. If that is so, we will have a powerful new way of diagnosing behavioral disorders and evaluating the outcome of treatment including the outcome of psychotherapy.

Seen in this light, the biology of mind represents not only a scientific and clinical goal of great promise but one of the ultimate aspirations of humanistic scholarship. It is part of the continuous attempt of each generation of scholars to understand human thought and human action in new terms.

Your generation—the first post-genomic generation—will have adequate information from both the human genome and from brain sciences to explore, more meaningfully than ever before, the genetic contribution to mental processes. Indeed, we already know that not only psychiatric disorders but almost all longstanding patterns of behavior—from wearing bow ties to being socially gregarious—show moderate to high degrees of heritability. The human genome will thus not only aid in revolutionizing psychiatry and neurology, but it also will allow us a better understanding of normal behavior—of how you and I function.

For example, the analysis of genetic polymorphisms may at last uncover how genetic factors interact with the environment to encourage our various intellectual capabilities, our mathematical and musical talents and perhaps even our differing capabilities for creativity, for empathy, and for self-understanding. Whatever the details, we can expect that the genome will reveal new links between genetics and environment that our society will eventually have to confront.

As these and other questions are addressed, biology and medicine will help transform our society as it transforms our understanding of the individuals in society. You will therefore be creating a world in which it is imperative for each individual to have sufficient understanding of this new knowledge so that we, as a society, can apply it wisely.

But like all knowledge, biological knowledge is a double-edged sword. It can be used for ill as well as for good, for private profit as well as for public benefit. In the hands of the misinformed or the malevolent, natural selection was distorted into social Darwinism, genetics was corrupted into eugenics. Brain sciences have also been, and can again be, misused for social control and manipulation.

This brings me to one final point. You will be entering a world that is being changed because of advances in science and in technology, and by the social ramifications of these advances. It will be your obligation to reach out to understand these advances, to evaluate them, to encourage some and restrict others. By extension, beyond your own edu-
cation, you will need to assume the leadership roles for which you have been trained here at Columbia, to ensure the scientific literacy of the general public, especially the scientific literacy of the patients that you will be treating. You will soon be seen as experts and sooner than you think you will be called upon to serve in that capacity. You will find, to your surprise and horror, that the knowledge of basic science that you have tried so hard, and often successfully, to repress will surface again and become useful to you.

Kandel’s Laws

Let me then conclude my comments about medicine’s aspirations for a new humanism by enunciating three principles that I now, in my seniority, invoke with some frequency. These principles, which I believe reflect some of my best thinking, are of such importance that I have come to refer to them, in the modesty and privacy of my own study, as Kandel’s three laws.

Kandel’s first law states that belonging to a university community is one of the great intellectual pleasures of one’s life. Universities are the institutions that make society great. People from all over the world come to the United States to study in our universities because the rest of the world sees the American university as our greatest national product. I will go further and say that I fully believe there is nothing more important for our society, and indeed for the world at large, than the two great missions of the university: to produce new ideas and to train young people to assume responsible roles in their society.

Belonging to a university assures you that you will be a scholar in perpetuity—one of the great sensual pleasures of life. Kandel’s first law, you will appreciate, is not original. I want to remind you that the first medical school convocation in the American Colonies was held at the College of Physicians & Surgeons, when this college conferred the first M.D. degree in the Americas, an honorary M.D., for his services to this college, to Samuel Bard, our first professor of medicine. In his commencement address on May 16, 1769—232 years ago to the very day—Samuel Bard said:

“Do not therefore imagine, that from this Time your Studies are to cease; so far from it; you are to be considered as but just entering upon them; and unless your whole Lives, are one continued Series of Applications and Improvement, you will fall short of your Duty... In a Profession then, like that you have embraced, where the Object is of so great Importance as the Life of a Man; you are accountable even for the Errors of Ignorance, unless you have embraced every Opportunity of obtaining Knowledge.”

Kandel’s second law is that within the university, teaching is a particularly rewarding activity. There is no better way to assure yourself that you understand an issue than to try to explain it to others. Teaching will guarantee that you understand the major scientific issues of your time. It will also give you a perspective of how your thinking and your work fits in with the rest of medicine.

Kandel’s third law is that patient care is beyond question our most important responsibility. That is why we are here. Never let patient care take a secondary role to any other activity in your professional life. Patient welfare is the ultimate goal of biological science and it is the engine that drives the whole scientific enterprise. Here, I again want to recall for you Samuel Bard’s comments of 1769:

“In your Behavior to the Sick, remember always that your Patient is the Object of the tenderest Affection to some one, or perhaps to many about him; it is therefore your Duty, not only to endeavour to preserve his Life; but to avoid wounding the Sensibility of a tender Parent, a distressed Wife, or an affectionate Child. Let your Carriage be humane and attentive, be interested in his Welfare, and shew your Apprehension of his Danger...”

As I hope these three laws make clear, you should leave here confident that the best days of medical care and the best days of your lives are ahead of you. As a result of the training you have received at the College of Physicians & Surgeons of Columbia University, we are confident that you will be able to influence, through your knowledge and your actions, the emergence of a new humanism, a humanism made more rational by a deeper respect of the genome and a greater understanding for the human mind. You are entering an exciting time in your lives and in the history of medicine, a time that will afford you the opportunity to benefit your patients, your university, and your society in novel, important, and humanizing ways. So enjoy the future, and do it justice. ■
It seems natural that Spencer Amory, associate clinical professor of surgery and chief of surgery at the Allen Pavilion, should be given the distinguished teacher award by the graduating class plus the Bohmfalk Award for Clinical Teaching in the same year. After a dozen years of five-week student rotations through surgery he still smiles as he declares that “what never gets old is the glint in the eye of a student who has figured something out.”

His love of education began early. His mother, a nurse in St. Kitts in the British West Indies, needed to go back to work and decided to send her young son to live with his grandmother and aunt. The aunt was a schoolteacher and, therefore, highly respected. She was, Dr. Amory recalls, “a woman who saw education as enjoyable, something that could change your life.”

He recalls that his aunt had a subscription to Reader’s Digest, and she had kept all the back issues since the 1950s. As a little boy he used to devour them one by one. One of his favorite series was “I am Joe’s Lung,” or “I am Jane’s Uterus.”
“That really captured my imagination,” says Dr. Amory. “I was 7 or 8 years old, and I figured that if I became a surgeon I would be able to get inside the body and actually see how these things worked. My folks were kind enough not to tell me that I was crazy to want to be a surgeon, even when they did not have the opportunity for even a college education.”

Dr. Amory learned on St. Kitts how education should not be, as well. “I remember once being chastised for solving a chemistry problem in a way that was not exactly what I’d been taught,” he says. Then in high school he had a biology teacher (a Peace Corps volunteer) who suggested that he write away for a textbook different from the one the class was using.

“It was the first time I saw a textbook like that in my life,” says Dr. Amory. “A bright yellow book, filled with interesting narrative that brought your mind alive instead of putting it to sleep. I knew I wanted to go to college in a place where education was like that.”

Dr. Amory applied to Long Island University because he could live with his older sister, who was a nurse in Brooklyn, and take the train to school. While in college he worked as a math, chemistry, and biology tutor. He defied common wisdom by starting a family before medical school (he now has three children, the oldest in college and the youngest in second grade). He also made the unorthodox decision to hold a night job throughout medical school.

“I wouldn’t say I was a rebel, but I was not good at following rules. I always did follow my heart, though. I would tell students today, the key is to choose a field that you think you will really enjoy, not what somebody else tells you should be doing.”

Medical school at Johns Hopkins further shaped Dr. Amory’s concept of education. “When I arrived at Hopkins, I thought I’d be at the bottom rung of a ladder, looking up to people acting much more important than me,” he recalls. But instead “we students were treated like a brain trust, an investment for the future, the way you’d treat your own children. I never felt like I was being tested but always as though I was being nurtured, molded into the best doctor I could be.”

He also appreciated the priority placed by Hopkins on teaching. “Teaching seemed a central part of the mission there. I remember if a well-to-do patient would object to being seen by students and residents, the professors would tell them, ‘Gee, I think you’ve come to the wrong place, because teaching is what we do here.’”

The only time Dr. Amory ever questioned his career choice was when he first encountered surgeons with highly competitive personalities. “The idea of trying to beat someone else never really captured me,” he says. “But then I soon met many surgeons to admire, and I realized I could be a surgeon and still be myself.” He chose Columbia for his residency because the atmosphere was similarly nurturing to what he experienced at Johns Hopkins.

Dr. Amory was asked to establish the surgery unit at the Allen Pavilion straight out of training, and he has been shuttling between campuses ever since. “What I’ve tried to do in the past 12 years is create an environment for students and residents that is focused on training and education. Not only on the nuts and bolts of surgery, but on how to take care of people. We see a really diverse group of patients at the Allen Pavilion.”

Dr. Amory realizes that the choice to focus on teaching and on the practice of general surgery has been limiting in some ways, leaving little time to do basic science research, for instance. On the other hand, it opened up opportunities for clinical research. “Basic science is generally considered more prestigious, leading to faster promotion and career advancement, but those have never been my main ambitions,” he says.

“I think that I have been blessed with opportunities not available to everyone, and I believe my strength is at the bedside. I therefore feel an obligation to share my expertise with others—whether they are patients or students.

“Many people go into surgery thinking at least they can fix what’s wrong with a person. Technology and scientific advances can give a sense that what is important is curing. But I think the crux of what we’re doing is trying to care for people and showing our concern. I hope the students of today never lose sight of that.”
FACULTY

LEONARD BRAND, M.D.

Dr. Leonard “Lenny” Brand, professor emeritus of clinical anesthesiology, died Feb. 11, 2001. A 1949 graduate of P&S, Dr. Brand joined a residency program in anesthesiology at Columbia-Presbyterian in the 1950s and spent his career at P&S and Presbyterian Hospital.

After an internship at Long Island College Hospital in Brooklyn, Dr. Brand joined a general residency program at Leo N. Levi Memorial Hospital in Hot Springs, Ark. During his time in Arkansas, he climbed to the top of a 115-foot water tank to care for a welder burned in an explosion inside the tank. The act earned him a bronze medal and citation from the Carnegie Hero Fund Commission.

PHILIP FEIGELSON, PH.D.

Dr. Philip Feigelson, retired professor of biochemistry and molecular biophysics and long-time associate dean for graduate affairs, died April 9, 2001. Dr. Feigelson spent more than 40 years at Columbia.

Dr. Feigelson joined P&S in 1954. He stepped down as associate dean for graduate affairs in 1997 to return to research full time. As associate dean, he expanded the size of the graduate program at P&S and was instrumental in developing a dedicated service center for graduate students at the Health Sciences campus.

OTHER FACULTY

ALUMNI

CLASS OF 1932

David Cowen, professor emeritus of neuropathology at P&S, died March 5, 2001. Internationally known in his field, Dr. Cowen published more than 70 papers in the course of a career that spanned more than five decades. A former president of the American Association of Neuropathologists, he was honored by the association in 1979 for his lifetime contributions to understanding diseases of the nervous system. He is survived by a nephew and seven great-nephews and great-nieces.

CLASS OF 1933

Word has been received of the death of Robert P. Barden, precise date unknown. A distinguished radiologist, Dr. Barden taught at the University of Pennsylvania and served as director of radiology at Chestnut Hill Hospital in Philadelphia. Survivors include his wife, Jan, four daughters, and 10 grandchildren.

Louis R. Slattery, professor of clinical surgery at NYU and a World War II veteran of campaigns in the South Pacific, died March 19, 2001. His affiliation with NYU spanned six decades, including 43 years of surgical practice and a second career as coordinator of the OR. Dr. Slattery was preceded in death by his wife, Lela, but is survived by two daughters and a son.

CLASS OF 1935

James M. Bonnar died Dec. 1, 2000. A longtime general practitioner in Middleboro, Mass., Dr. Bonnar was a past president of the Plymouth County Medical Society. He is survived by his wife, Lillian, a daughter, three sons, and five grandchildren.

CLASS OF 1936

Burr H. Curtis, a retired orthopedic surgeon, died Jan. 9, 2001. Dr. Curtis was medical director emeritus of the Newington Children’s
Hospitai in Newington, Conn., where a hospital building was named in his honor. Former clinical professor of orthopedic surgery at the University of Connecticut, he was past vice president of the American Academy of Orthopedic Surgery and founding member and first president of the Pediatric Orthopedic Society. He is survived by his wife, Peg, a daughter, and five grandchildren.

Theodore Lidz is the Sterling Professor Emeritus of Psychiatry at Yale and former psychiatrist in chief at Yale-New Haven Hospital, where he taught for many years, died Feb. 16, 2001. The author of six books and countless book chapters and peer-reviewed papers, Dr. Lidz, a world-renowned expert on schizophrenia, counted among his many encomia the Lifetime Achievement Award for Outstanding Contributions to the Psychotherapy of Schizophrenia from the International Conference on Psychotherapy of Schizophrenia, the William C. Menninger Memorial Award of the American College of Physicians, the Lauglin Award for contributions to the American College of Psychoanalysis, and the American Family Therapy Association Award. He was a past president of the American College of Psychoanalysis. A loyal P&S alumnus, he served for many years as his class chairman. Preceded in death by his wife, Ruth, he is survived by three daughters, four sons, and two grandchildren.

Class of 1941

H. Vinton Coes died in January 2001. A retired family practitioner from Sussex, N.J., Dr. Coes is survived by his wife, Eleanor. **Thomas V. Judge**, a retired obstetrician-gynecologist from West Orange, N.J., died July 14, 1999. He is survived by his wife, Laura, three daughters, four sons, and two grandchildren. Dr. Judge, who had been affiliated with St. Mary’s Hospital in Orange, served with the 10th Armored Group of the Marine Corps AUS during World War II. **Milton B. Smith** died Jan. 16, 2001. Graduating with a degree in geology from UC Berkeley just before the Great Depression, Dr. Smith took a job in the mines before opting for a medical career. A longtime internist and chief of staff of Mark Twain St. Joseph’s Hospital, served with the 10th Armored Group of the Marine Corps AUS during World War II. **Daniel F. Hanley**, a pioneer in drug testing of Olympic athletes, died May 6, 2001, at age 85. Himself a star athlete in younger years, Dr. Hanley served as a major in the U.S. Army Medical Corps. After leaving the military he opened a private surgical practice. He is survived by his wife, Dottie, and three sons. **Leon J. Warsaw**, who made his mark on public health in New York City as founder of the New York Business Group on Health, died of a heart attack Jan. 3, 2001, at age 83. Dr. Warsaw wrote “Malaria: The Biography of a Killer,” was co-author of “Protecting the Health of the Public: The New York Academy of Medicine, 1947-1997,” and was co-editor of the “Encyclopedia of Occupational Health and Safety.” Dr. Warsaw worked as corporate medical director to a number of major companies, including Equitable Life Assurance, United Artists, and Paramount Pictures, before taking on the job of deputy director in the New York City Mayor’s Office of Operations under Mayor Edward Koch. His wife, Mona, two sons, and four grandchildren are among his survivors.

Class of 1943

Elmore M. Aronstam, a thoracic and general surgeon from Los Osos, Calif., died Jan. 10, 2001. Dr. Aronstam had been a member of the faculty at Colorado Medical School. He earned a Legion of Merit award from the U.S. Army for his 23 years of service in the Army Medical Corps. After leaving the military he opened a private surgical practice. He is survived by his wife, Dottie, and three sons.

Burr H. Curtis’36 was re-designed the football shoe to prevent injury. From 1960 to 1972, he volunteered as chief physician to the U.S.
Olympic teams and later served as medical commissioner of the International Olympic Committee and deputy chairman of the International Association of Olympic Medical Officers. He is survived by his wife of 53 years, Maria, two daughters, two sons, and 11 grandchildren.

• Theodore N. Pullman died of kidney failure Feb. 8, 2001. A former professor of medicine at the University of Chicago and Northwestern University, Dr. Pullman’s scientific contributions included a key role in the development of new drugs for malaria, research on electrolyte metabolism of kidney function, and molecular biology studies of thyroid function. Dr. Pullman served in the U.S. Army Malaria Research Unit at Stateville Penitentiary during World War II, which earned him an Army Commendation Ribbon. His team helped develop primaquine and chloroquine in the treatment of malaria. Marjorie, his wife of 52 years, and a son survive him.

• Daniel Stowens, a retired forensic pathologist, died July 19, 2000. Dr. Stowens began his academic medical career as an instructor in pediatrics at the American University of Beirut. He served in the U.S. Army as chief of laboratories at the 112th Evac Hospital from 1951 to 1952 and then headed the pediatric section of the American Registry of Pathology at the Armed Forces Institute of Pathology in Washington, D.C. In the course of his career, he served on the faculties of Tufts and Boston universities. He is survived by his wife, Marjorie, three daughters, a son, and five grandchildren.

• Frank M. Dain died Nov. 11, 2000, at age 79. Dr. Dain served in the U.S. Navy from 1942 to 1948. One of the early practitioners in the nascent field of ultrasound, Dr. Dain was chief of ultrasound at St. Luke’s Hospital in New York before retiring to North Carolina. He is survived by his wife of 56 years, Grace, two daughters, a son, and seven grandchildren.

• Warren J. Taylor died March 30, 2001. A retired thoracic surgeon, he had been chief of surgery at Malden Hospital in Malden, Mass., and founder and principal of the Cardio-Thoracic Associates, a group surgical practice. Dr. Taylor had taught on the clinical faculties of Tufts and Boston universities. He is survived by his wife, Marjorie, three daughters, a son, and five grandchildren.

• Daniel Stowens, a retired forensic pathologist, died July 19, 2000. Dr. Stowens began his academic medical career as an instructor in pediatrics at the American University of Beirut. He served in the U.S. Army as chief of laboratories at the 112th Evac Hospital from 1951 to 1952 and then headed the pediatric section of the American Registry of Pathology at the Armed Forces Institute of Pathology in Washington, D.C. In the course of his career, he served on the faculties of Tufts and Boston universities. He is survived by his wife, Marjorie, three daughters, a son, and five grandchildren.

• Frank M. Dain died Nov. 11, 2000, at age 79. Dr. Dain served in the U.S. Navy from 1942 to 1948. One of the early practitioners in the nascent field of ultrasound, Dr. Dain was chief of ultrasound at St. Luke’s Hospital in New York before retiring to North Carolina. He is survived by his wife of 56 years, Grace, two daughters, a son, and seven grandchildren.

• Warren J. Taylor died March 30, 2001. A retired thoracic surgeon, he had been chief of surgery at Malden Hospital in Malden, Mass., and founder and principal of the Cardio-Thoracic Associates, a group surgical practice. Dr. Taylor had taught on the clinical faculties of Tufts and Boston universities. He is survived by his wife, Marjorie, three daughters, a son, and five grandchildren.

Class of 1947
Lester J. Martens died Sept. 6, 2000, at age 78. A former chief of medicine at Floyd Medical Center and Redmond Regional Medical Center in Rome, Ga., he had served as a chief surgeon in the U.S. Air Force from 1952 to 1954. Following his return to civilian life he served for two decades as medical director at General Electric Co. in Rome. He was also a director of the Georgia Tuberculosis Control Program. He played a role in the design and construction of the first heart defibrillator and inserted the first pacemaker in his area. Dr. Martens is survived by his wife, Teresa, four daughters, two sons, and two grandchildren.

Class of 1948
Retired psychiatrist Lothar Gidro-Frank of Tuckahoe, N.Y., died in August 2000.

Class of 1950
Retired internist Rolf H. Scholdager of Santa Monica, Calif., died May 8, 2001. He had been a member of a group private practice. A loyal alumnus who supported multiple causes at P&S, including a scholarship fund in his name, he left a considerable bequest to the school. There are no known survivors.

Class of 1965
The Alumni Office has learned of the death of general surgeon Paul C. Redmond on March 3, 1998. Having served as a major in the U.S. Army from 1970 to 1971, Dr. Redmond pursued his medical career at Ohio State University, where he was a member of the surgical faculty. He is survived by his wife, Astrid, a daughter, and a son.

Class of 1970
Stephen A. Cole died of acute leukemia Oct. 29, 2000. Clinical associate professor of psychiatry at New York University from 1977 to 1996 and more recently an adjunct member of the faculty at Dartmouth Medical School, Dr. Cole pursued a private psychiatric practice in Brattleboro, Vt. The two-time recipient of the Exemplary Psychiatrist Award from the National Alliance for the Mentally Ill, his practice included working with families of the mentally ill. At the time of his death he was staff psychiatrist at Health Care & Rehabilitation Services of Southeastern Vermont and Windham and Windsor counties and medical director of outpatient services at Brattleboro Retreat. Survivors include his wife, Dalen, and a daughter.

Correction
The late Lester Baker’59 was inaccurately listed in the Spring 2001 issue as a member of the Class of 1956.
The brain is a world consisting of a number of unexplored continents and great stretches of unknown territory," wrote Spanish neuroanatomist Ramon y Cajal. Marble reliefs and scarred skulls found at the Temple of Luxor suggest that the ancient Egyptians took an early "crack" at it.

Subsequent intracranial reconnaissance missions took several millennia. The first significant inroads were made by neurosurgeons Sir Victor Horsley in England, Harvey Cushing in America, and Wilder Penfield in Canada, in the early days of the 20th century.

Notable among the generation of neurosurgical trailblazers that followed is J. Lawrence Pool'32 MSD'41. His multiple innovations, including the introduction of the microscope to operate on cerebral aneurysms and the development of the myeloscope to pinpoint problems of the lower spine, as well as his consummate skill in the OR, made him the second American to receive the prestigious Medal of Honour of the World Federation of Neurological Sciences.

At 95, with arthritic spurs pinching his spine, the indomitable Dr. Pool still maneuvers his way around his West Cornwall, Conn., ranch house, nimbly alternating among a wheelchair, two canes, and a pusher. He may not move quite as swiftly as he once did on the squash courts as two-time National Squash Racquets Champion in 1929 and 1931 or with the agility of the ace fly fisherman and trans-Atlantic Yankee skipper he was in younger years. But everything’s in tiptop shape upstairs in that part of the human anatomy he helped map out and mend.

A decade ago, deriding those content to sit on their laurels and "stick to their left or banker's brain," he set out to learn something brand new. Life’s challenges continue to engage and stimulate the vigorous nonagenarian. The walls of his home are covered with his and his late wife’s water colors and pastel depictions of nature. The bookshelves are well-
stocked with books on a multitude of subjects, including the 15 volumes he authored. Having lost his beloved Angeline some years ago, he pretty much fends for himself. And while the years have chiseled away at his ruddy good looks, they have not robbed him of the gusto he continues to invest in everything he does, most recently in the writing of book No. 16, observations on the antics of Connecticut wildlife. After more than three decades in rural Litchfield County, the self-proclaimed “newly planted rustic” is not averse to looking back on his years in the Big Apple, especially his time at P&S and the Neurological Institute of New York, where he trained and later served as chairman of neurological surgery from 1949 to 1972.

Of Bridge Cables and Cadavers

Born in a bygone era of gas light and horse-drawn buggies, or as he puts it in his lively memoir, “Adventures and Ventures of a New York Neurosurgeon” (1988), “an age of cholesterol and coal,” Dr. Pool likes to joke that the Neurological Institute “was founded in 1909 and I was founded in 1906, which makes me the statelier institution!” He is quick to add that NI is “my favorite hospital of all time.”

Earning his B.A. from Harvard, he was a member of the first P&S class to attend medical school at the new medical center uptown. From his first-year anatomy table, he dissected muscles and organs while watching out the window as construction crews strung the cables of the George Washington Bridge. He studied surgery under the eminent Dr. Allen Oldfather Whipple and became hooked on the intricacies of the human nervous system under the tutelage of Drs. Frederick Tilney and Harold Riley, the neurologists who co-authored the classic textbook of the day.

Surgery, you might say, ran in the family. An ancestor, Dr. John Adams Pool, earned his degree from the old Queens College (later Rutgers) in 1824. His father, Dr. Eugene H. Pool, a past president of the American College of Surgeons, was one of the country’s top general surgeons. His cousin, John L. Pool ’34, is a distinguished retired chest surgeon.

As a medical intern Dr. Pool already made history, helping to inaugurate the new New York-Cornell Hospital in 1932. “I was the low man on the totem pole,” he recalls with his trademark chuckle, “so I was privileged to admit the very first patient to the entire medical center. Nobody knows that, except me!”

Following a year of research on the circulation of the brain at Harvard, he returned to Presbyterian Hospital to pursue an internship in general surgery, followed by residencies in neurology and neurological surgery at the Neurological Institute. Working as an attending neurological surgeon at Bellevue Hospital, he simultaneously conducted research at P&S toward an MSD, which he received in 1941. His postgraduate investigation, conducted with neuroanatomist Dr. Fred Mettler, traced the path of nerve impulses in the wake of convulsive seizures in animal models. It had seminal implications for paraplegics. He later tried without success to interest IBM in building a device that would electrically stimulate damaged neurons and enable rudimentary moves. The idea was picked up years later in the Para-Step system.

Brain Surgery on the Battle Lines (and Dancing with Dietrich)

World War II brought a sudden shift of focus and locale. Dr. Pool was shipped to North Africa with a mobile tent hospital, the 9th Evacuation Hospital, to treat the casualties of combat with Germany’s fabled “Desert Fox,” Field Marshal Rommel. His schedule vacillated from lengthy periods waiting for action to frenetic day and night stints in the makeshift OR. Following Rommel’s defeat, Dr. Pool fondly recalls directing the commandant of a long column of German trucks and tanks straight to the prison camp. “God, were we ever glad to see them surrender!” Later transferred to Italy in preparation for the Allied invasion of southern France, he was based in Naples. On one occasion, at a USO dance, he had the pleasure of dancing with Marlene Dietrich. Demobilized in 1946, Dr. Pool retired from the U.S. Army Medical Corps with the rank of lieutenant colonel.

A Fly in the OR and Other Exploits

He returned to the Neurological Institute in 1947 as a junior staff member. A mere two years later, to his amazement and delight, he was named professor and chairman of neurological surgery and chief of the neurosurgical service, positions he held with great distinction for the next 25 years. His accomplishments in that capacity were both legion and legendary.
Former resident, colleague, and lifelong friend Edgar Housepian’53 likes to tell of the time a fly got into an OR. Surgeon, resident, nurse, anesthesiologist—everyone was in a pickle until Dr. Pool happened to peek in, spotted the winged intruder, thrust out his hand, grabbed it out of thin air, and walked out. “It was really spectacular! He was only there for several seconds, and he took the thing—swoosh!” His expertise on the squash court and as a fly fisherman came in handy.

Fly catching was not, of course, his only claim to fame.

Regarding his friend’s dynamic technique and “on your feet” thinking, Dr. Housepian recalls, only half tongue in cheek, that “Dr. Pool had a thousand surgical ideas a month. Anyone who gets that many ideas has 600 crackpot ideas; nobody else has 300 ideas that work, but he did.”

Diffusing Time Bombs in the Brain

Among his most celebrated innovations, Dr. Pool introduced the use of the microscope in aneurysm surgery in 1963. “We were having so much trouble with aneurysms, which are little blood blisters of a brain artery. The blood vessels were so tiny you could hardly see them. We had used jeweler’s loops but they didn’t magnify enough. I heard about binocular microscopes being used by ear surgeons,” he recalls, “and figured, well here’s the microscope, why not use it in the brain. So we did.”

Another groundbreaking idea came, as many surgical innovations do, at a moment of crisis. In the midst of an aneurysm operation, the patient’s heart suddenly stopped beating. Dr. Pool kept his cool, thinking “If she dies I might as well fix the aneurysm. If she lives she’ll have it fixed and won’t have to go through it all again.” With lightning speed, he commanded the surgical resident on hand to “slash the chest open, put your gloved hand in and squeeze the heart.” Which he did, until the head of the surgical cardiac arrest team, John Schullinger’55, came to the rescue. Unfortunately, the mechanical cardiopulmonary resuscitator malfunctioned and Dr. Schullinger had to take turns with the resident to manually pump the heart while Dr. Pool wrapped up the ruptured blood vessel and proceeded with the operation.

“I got that idea,” he chuckles, “from reading sea stories and ocean racing. Columbus had no shipyards off the coast of Cuba. So they took an extra sail, swung it under the boat and hooked it up like a diaper to keep the water from pouring into the hull. That’s just what I did. I still remember the patient. She had seven children. I said to myself, ‘I’ve got to save her!’” And he did. In less than 20 minutes the aneurysm was located and repaired. The success of the operation subsequently led surgeons to deliberately stop the heart under controlled conditions to cut off blood flow to the aneurysm and facilitate safe and speedy repair.

Other Surgical Brainstorms

An acknowledged master at the art of doing spinal taps, Dr. Pool invented the myeloscope, a plastic tube combined with a tiny millet-seed-sized bulb invaluable in the detection of abnormalities in the lower spine. A recent symposium at Yale was devoted to this innovation.

Dr. Pool is also credited with the discovery of the ulnar adductor reflex of the ulnar nerve. As a resident at NI, he examined a young girl who complained of a funny feeling in the hand. While senior colleagues relegated the patient’s problem to neurosis, Dr. Pool diagnosed an unspecified problem in the spinal cord.
He was later proved right when the same patient presented a year later with a paralyzed arm caused by tumors of the neck and cord.

Other noteworthy accomplishments are the early diagnosis and surgery of acoustic nerve tumors, previously considered inoperable; the refinement of frontal lobotomies with a high record of success; identification of cerebral vasospasm as an observable phenomenon; and proof that prompt intracranial surgery was the optimal way to treat bleeding aneurysms during pregnancy.

Dr. Pool also lent his leadership skills to help create and run professional organizations in his field. He was a founding member and the first president of the New York Neurosurgical Society, a past president of the American Academy of Neurological Surgery, and two-term treasurer of the World Federation of Neurosurgical Societies.

From Skill with a Scalpel to Mastery of Pen and Ink

Surgeons, as Dr. Pool readily admits, are not generally thought to be of a reflective bent. “My friends used to kid me on that score. ‘Larry,’ they said, ‘you’d rather act than think!’” Man of action though he is, Dr. Pool has done more than his fair share of reflection, resulting in more than 100 articles and 15 books, including two celebrated textbooks, “The Early Diagnosis and Treatment of Acoustic Nerve Tumors” and “Aneurysms and Arteriovenous Malformations of the Brain”; a medical book for the public, “Nature’s Masterpiece, The Brain and How it Works”; “History of the Neurological Institute of New York”; two memoirs; and other eminently readable volumes on everything from Isaak Walton and fly fishing to Valley Forge and the great fighting sloops of the American Revolution. Among his multiple gifts to P&S is the J. Lawrence Pool Prize in Medical Writing given annually to a medical student author of the best paper published in the student-produced P&S Medical Review.

Unabashed Delight in Multiple Pursuits

Dr. Pool prefaced his memoir, “Adventures and Ventures of a New York Neurosurgeon,” with a tongue-in-cheek disclaimer: “For the fun that came my way as a would-be horseman, skier, and plane pilot I apologize to those who worked while I played. The ancient proverb ‘all work and no play’ is my feeble excuse. As a fisherman, more ardent than apt, I was granted happy intervals of freedom from research ventures and arduous hospital and teaching duties.” Such “intervals” were spent on the squash court, the deck of a ship, the bank of many a mountain stream, and, with his family, wife Angeline and three sons, at a camp in Maine. “I kept my weekends remarkably free for the family.”

A Loyal P&S Alumnus

He found time for his medical alma mater, serving as chairman of the P&S Club Faculty Advisory Board and president of the P&S Alumni Association. He also helped out in countless other official and unofficial capacities. A helpful adviser to generations of students, he and his wife would invite students and house staff to their home at least once a month. His generosity has included the construction of a state-of-the-art squash court in Bard Hall and the endowment of a professorship in neurosurgery in his name.

Dr. Pool was honored with the 1974 P&S Alumni Association’s silver medal for service to the school and its alumni and the 1982 gold medal for distinguished service in academic medicine. He was honorary alumni day chairman in 1985, and in 1992 he received the Presbyterian Hospital Medical Excellence Tribute.

In 1972—the “slowed-down” year of his ostensible retirement from practice and teaching—he was sprinting round the globe, lecturing as visiting professor in Edinburgh, addressing an international meeting in Prague, salmon fishing in Iceland, and officiating at a Neurological Academy meeting in California. While the pace has slackened some since, the life gusto has not diminished one iota. “I’m pleased to be here with the buttons still working,” he winks, wheeling his way back to the typewriter.
The distinctive green pagoda roof of Prince Yu’s Palace still stands at the heart of Peking Union Medical College in downtown Beijing, the symbol of a fruitful union between Eastern and Western knowledge, manpower, and resources.

Founded by the China Medical Board of the Rockefeller Foundation in 1921, PUMC was, in its heyday, China’s and Asia’s most respected and influential medical school. Intellectually linked, albeit loosely, to Columbia University, the PUMC faculty included such P&S legends as surgical bacteriologist Frank Meleney, histologist and educator Aura Severinghaus, pharmacologist Harry Van Dyke, and plastic surgeon Jerome Webster.

Their findings and innovations in multiple fields based on research done at PUMC crossed institutional, disciplinary, and national borders, ultimately benefiting humanity at large. Their students spread the medical gospel of scientific rigor and humanistic caring throughout China. The educational standards they established were subsequently imported back to the States and used to reform the American medical educational system.

Columbia in China, the Glory Days

The influence of Columbia University on modern Chinese thinking can be traced back to John Dewey of Columbia’s Teachers College, who lectured in China and whose pragmatic philosophy had a profound impact on the thinking of a new generation of young Chinese intellectuals. A student of Dewey’s at Columbia, Hu-Shi, considered the “father of the Chinese Renaissance” in education, later became a trustee of PUMC.

From its beginning, this fledgling medical school attracted a talented and dynamic group of teachers enticed by the challenge. Histologist Aura Severinghaus did pioneering research in China on the sexual cycle of Schistosoma japonicum, a parasitic worm that afflicted the Chinese rural population. He also served as the last dean of PUMC’s pre-medical school, later returning to P&S as dean of admissions. Applying his Chinese administrative experience back in the States, Dr. Severinghaus led two national studies on preparation for medical education that proved decisive in strengthening American pre-medical education. (An interesting historical footnote: While in Beijing, Dr. Severinghaus directed a men’s choir that sang at the PUMC funeral service of the founding father of modern China, another medical man, Dr. Sun-Yat Sen.)

A close colleague of Dr. Severinghaus in the lab at PUMC and later at P&S, Dr. Frank Meleney, discovered anaerobic micro-streptococci and introduced the use of hydrogen peroxide as an antiseptic agent for surgical infections. Having previously served as an instructor in surgery at P&S, upon his return to the United States he re-joined the Department of Surgery, where, among other accomplishments, he discovered the antibiotic bacitracin and wrote the classic textbook on surgical bacteriology.

Among the most notable P&S names at PUMC was an early associate of Dr. Meleney’s, Dr. Jerome B. Webster, who first helped shape up the surgical service in Beijing and then began his pioneering work in plastic surgery. His last trainee at P&S was David Chiu’73, a native of China and himself a pioneer in the application of microsurgical techniques, thus continuing the circle of influence.

Another leading light, Dr. Harry Van Dyke, who subsequently put modern pharmacology on the map as the David...
Hosack Professor of Pharmacology at P&S, pursued his early research in neurohypophysis and honed his physiological and biochemical skills at PUMC. China had a profound personal influence on him too. After his retirement in the United States, he returned to Asia, first to teach at the National Defense Medical Center in Taipei and later as a founding member of the Department of Pharmacology at the University of Malaysia in Kuala Lumpur.

Most famous among the Chinese faculty members was the chairman of biochemistry at PUMC, Dr. Hsien Wu, whose urine test for sugar, developed in collaboration with Dr. Otto Folin, bore their names (Folin-Wu).

P&S Alumnus Helps Reestablish a Traditional Link

Wafted by the winds of history, PUMC in subsequent years went through seizure by the Japanese, closure during World War II, nationalization, multiple name changes, and downsizing. But its reputation is once again on the rise and the historical P&S tie has been reestablished, thanks in no small part to the commitment of a P&S alumnus, Clyde Y. Wu’56, and his wife, Helen.

Dr. Wu, who came to America from China to study medicine and has pursued a successful career in cardiology in Detroit, retains strong feelings for both his native and adoptive homelands and for P&S. He and his wife have translated that commitment into the Sino-American Exchange Program at P&S. Under its auspices, P&S faculty have lectured in China and senior Chinese educators from PUMC have come to P&S to observe the American medical school structure and curriculum and to help direct a restructuring back home. Following the visit in 1994 of Dean Zheng and vice chairman of medicine Dr. Xue-Yang Li, PUMC successfully completed the modernization of its medical curriculum, including the early introduction of clinical training and medical ethics. The model has won accolades and inspired other institutions in China to follow suit. In addition, P&S faculty members, including endocrinologists John Bilezikian’69 and Ethel Siris’71, have lectured in China, and Chinese researchers have visited America to collaborate in laboratories in the Department of Medicine at P&S.

“At this time in our career,” says Dr. Wu, “my wife and I think this is really the most effective way to help China—to which we owe our heritage—and also P&S, my beloved medical alma mater, to which I owe my career. I’m no Rockefeller, but if in our own small way we can enable Columbia to fulfill its educational mission of reaching out to the world and help PUMC recapture a little of its past glory, we will be well pleased.”

Columbia University trustee and a member of the Columbia-Presbyterian Health Sciences Advisory Council, Dr. Wu is a faculty member in the Department of Medicine at Wayne State University in Detroit and former chief of the pulmonary division at the Oakwood Hospital in Dearborn, Mich. A fellow of the Royal College of Physicians in Edinburgh and the American College of Cardiology, he was a principal member of the Cardiac Catheterization Unit at Detroit General Hospital. His extra-medical commitments include community service as vice chairman of the Detroit Symphony Orchestra and founding member of the Friends of Asian Arts at the Detroit Institute of Arts.

A partner with her husband in the Sino-American Exchange Program and other philanthropic pursuits, Helen Wu, a concert pianist, musicologist, and patron of the arts, also has been instrumental in helping to interview and select the international participants.

The Wus, whose largesse to P&S includes the endowment of three professorships, a student loan fund, and a chamber music room, have helped Columbia take up where history left off.
ALUMNI WEEKEND

DEAN’S DAY PROGRAM

Dean’s Day Chairwoman Carmen Ortiz-Neu’63 added a personal note to her introduction of the morning program devoted to Columbia’s tradition of international outreach. Citing Dr. Harold Brown’s popular course in tropical medicine, through which generations of P&S graduates were exposed to medical issues far afield, Dr. Neu recalled how Dr. Brown visited her native Puerto Rico when she was a child to help organize the island’s medical school. Dr. Neu’s father became the first chairman of pediatrics at the school.

Nobel Laureate Baruch S. Blumberg’51 kicked off the program with a lively review of his career. “My experience has been circuitous, the way life is, the way Russian novels are, expecting the unexpected.” The research leading to the discovery of the hepatitis B virus for which he received the 1976 Nobel prize in medicine took him around the globe. Dr. Blumberg has more recently taken his ever-inquisitive mind literally out of this world as director of the NASA Astrobiology Institute.

William T. Close’51, a past president of the board of directors of Kinshasa General Hospital and former head of the National Health Council of Zaire, spent much of his medical career in Africa. “The globe is shrinking, at least for those of us able to access modern technology, and yet millions of people in the rest of the world are barely surviving. And as the world shrinks, the chasm between rich and poor increases. As professionals committed to human suffering, our challenge is to diminish the widening gulf.”

The next speaker, pediatrician Roy E. Brown’56, who also holds a graduate degree in public health from the University of North Carolina, spoke of his parallel career in international public health. Dr. Brown focused his presentation on his study of child nutrition in Uganda during the “good years” before the dictatorial rule of Idi Amin.

Cardiologist and hands-on philanthropist Clyde Y. Wu’56 shifted the panel’s focus to the Far East, more specifically to his native China. Dr. Wu spoke about the Sino-American Exchange Program he and his wife, Helen, established at P&S to foster a medical educational dialogue with Peking Union Medical College and other schools in China and Hong Kong.

Gerard M. Turino’48 took to the podium in his capacity as outgoing president of the American Bureau for Medical Advancement in China, a non-profit and non-political medical and scientific service organization devoted to the advancement of health in the Republic of China (Taiwan).

Louis M. Sherwood’61 rounded out the program from a pharmaceutical perspective. Senior vice president for medical and scientific affairs in the U.S. Human Health Division of Merck, Dr. Sherwood discussed the company’s many international programs and, in particular, its distribution of much-needed medicines to developing countries.
Woman in Medicine Award

Former P&S Alumni Association president Marianne Wolff ’52 officiated at the presentation of the Second Annual Virginia Kneeland Frantz ’22 Distinguished Woman in Medicine Award to Martha M. MacGuffie ’49. Dr. MacGuffie’s humanitarian efforts as the founder, president, and prime mover of the Society for Hospital and Resource Exchange (SHARE), a non-profit conduit for medical technology and manpower to Kenya and elsewhere in Africa, have been recognized with Lions Club International’s prestigious Humanitarian Award and other encomia.

Rachmaninoff Rings Again

The old Rachmaninoff piano was retuned and “dusted off” for the occasion, compliments of Helen Wu, a concert pianist, musicologist, and patron of the arts. At a concert and dedication of the Clyde Y. Wu’56 and Helen Wu Music Room in Bard Hall, Mrs. Wu told of how, when her husband brought her to visit Bard Hall she fell in love with the piano. Thrilled when she heard that the Russian maestro himself is thought to have played it, Mrs. Wu, who studied with a disciple of Rachmaninoff’s, decided then and there to have it repaired as a gift to the school. They also created a chamber music room to house it.

Scientific Session

Alumni Day program chairman Andrew G. Frantz ’55 introduced Dr. Alexander Garcia as honorary Alumni Day chairman. Dr. Garcia reflected on his life’s journey from 125th Street, where he was born, to 120 Haven Avenue, where he was the first Frank E. Stinchfield Professor and Chairman of Orthopedic Surgery.

These scientific papers were delivered:

“Cyclooxygenase-2 and Human Prostate Cancer,” Alice C. Levine ’81, clinical associate professor of medicine, Mount Sinai School of Medicine

“Hypertension in Pregnancy: A Potential Window into Long-Term Cardiovascular Risk in Women,” Ellen W. Seeley ’81, assistant professor of medicine, Harvard

“Spinal Deformity Treatment Based upon Degree of Difficulty,” Charles E. Johnston ’76, associate professor of orthopedics, University of Texas Southwestern Medical Center

“The Road to ‘Super-Vision’: An Update on Customized Excimer Laser Surgery,” Marguerite McDonald ’76, clinical professor of ophthalmology, Tulane School of Medicine

“Doctors in the Movies,” Peter E. Dans ’61, associate professor of medicine, Johns Hopkins School of Medicine

“The Paradoxical Story of Parathyroid Hormone and Bone,” Robert M. Neer ’61, associate professor of medicine, Harvard

“A Second Frontier: The Physician’s Journey to Outcome-Oriented Medicine,” Louis M. Sherwood ’61, senior vice president, medical and scientific affairs, U.S. Human Health Division, Merck & Co.

“Porous Diaphragm Syndromes,” Paul A. Kirschner ’41, emeritus professor of cardiothoracic surgery, Mount Sinai School of Medicine
GALA DINNER DANCE

The Hudson River was the backdrop for the annual gala reception and dinner dance at Pier 60, the culmination of the weekend-long celebration. “Members of the Class of 2001, we salute you at having completed one of the most arduous tasks in American education,” declared the master of ceremonies, Alumni Association president David T.W. Chiu ’73. He also paid tribute to the Class of 1951, whose co-chairman Morris Freeman ’51 took to the podium. “It dawns on me that my classmates and I are the bridge between those who began the 20th century and those who are beginning the 21st. And what a century it has been.”

The chairman of the Honors and Awards Committee, Donald O. Quest’70, presided over the awards ceremony. A special recognition award for outstanding contributions to leadership in American medicine went to Donald A.B. Lindberg’58, director of the National Library of Medicine and a pioneer in medical informatics. Allen C. Steere’59, who first identified the cause of Lyme disease, received the gold medal for distinguished achievements in medicine. Kenneth A. Forde’59, one of the country’s most distinguished surgeons and an expert in the causes and prevention of colon cancer, was honored with the gold medal for clinical excellence. The gold medal for meritorious service to the school and its alumni went to Judith Sulzberger’49, a prime mover in, among other areas, the creation of the Columbia Genome Center, recently named in her honor at P&S. Erin Hickey’01, president of the P&S Club, received the gold medal given to a graduating student in recognition of interest in and devotion to the school and its Alumni Association.

At the 50th anniversary class party, Dean Gerald Fischbach, right, read student evaluations found in old records with Nobel Laureate Baruch S. Blumberg’51.

Judith P. Sulzberger’49 receives the gold medal for service to P&S and its alumni from Donald O. Quest’70

Jay H. Lefkowitch’76

Alumni Association president David T.W. Chiu’73, Clyde Y. Wu’56, Helen Wu, and Dean Gerald D. Fischbach
BARD DINNER

On Feb. 21, 2001, at the United Nations Delegates Dining Room, delegates of another kind, staunch friends of P&S from around the country, made common cause. It was the annual gathering of the Samuel Bard Associates, a select group of donors. “We have talked a lot about Sam Bard in the past,” said annual fund chairman Richard J. Stock’47, “I think it’s time to talk of the man who took over his practice,” another original P&S faculty member, Dr. David Hosack. Part of the latter’s legacy to the medical school and the city, Dr. Stock recalled, was a plot of land, some 20 acres on old Middle Road on which he planted a botanical garden, including a medicinal herb patch. Dr. Hosack left the land to P&S. Fearing the burden of upkeep, the school declined the gift and the New York legislature awarded it to Columbia University, then a separate entity. “It is one of the cruel ironies,” Dr. Stock concluded, “that the property P&S didn’t want sits at the entrance to today’s Rockefeller Center.”

Former dean Dr. Herbert Pardes, now president of New York-Presbyterian Hospital, took the podium to introduce his successor. Saluting the incoming dean, Dr. Gerald D. Fischbach, Dr. Pardes predicted that “we are now entering an unprecedented era of cooperation between this medical school and this hospital.” Dr. Fischbach graciously replied: “Herb is not a tough act to follow, he’s a wonderful act to follow! It really is a privilege to be a part of the P&S community. I feel like I’ve come home. I hope I can instill in you some of the excitement I feel. At P&S, anything is possible. We want to make this medical school the national leader in research and clinical care. With your help, I know we can do it.”

ALUMNI COUNCIL

Dr. John Oldham, the Dollard Professor of Psychiatry and acting chairman of psychiatry, was the featured speaker at the council dinner March 21, 2001. Dr. Oldham discussed the state of mental health in America and, more specifically, current research and educational programs at the New York State Psychiatric Institute. Clouded by an enduring stigma, mental illness continues to plague society, which for all intents and purposes continues to turn its back on the problem. Second only to cardiovascular diseases in impact on the market economies of the world, psychiatric disorders comprise five of the top 10 health-related disabilities in the world. According to the Surgeon General’s 1999 report, one in five adults experience some significant mental disturbance each year and half of the afflicted do not seek treatment. Dr. Oldham stressed the importance of increased education of the public that “mental illnesses are diseases of the brain.” New, more effective treatments on the market are helping to dissolve the stigma. The oldest research facility of its kind in the United States, PI is more active than ever in research and treatment. Its new home base, which opened its doors in 1998, has 60 beds with 36 dedicated to research. Dr. Oldham related with pride that the psychiatric institute was ranked No. 2 in the nation in the latest survey of the U.S. News and World Report.

PARENTS DAY PROGRAM

Parents, siblings, friends, and significant others of P&S students crowded the Alumni Auditorium April 21, 2001, for the ninth annual Parents Day Program. “Although I’m here to welcome you,” said Dean Gerald D. Fischbach, “I want it to be a mutual welcoming. I just got here from the NIH, where I directed the National Institute of Neurological Disorders and Stroke. I have always had a deep interest in medical education. I have never been at an institution where there is so much enthusiasm and real joy among the students. We went into medicine because it is a glorious profession; there is no greater calling. We’re in this together.” To the parents he said, “I want you, too, to feel a part of this whole experience.”
Parents Day chairwoman Carmen Ortiz-Neu’63, associate clinical professor of medicine and mother of an alumna, Natalie Neu’91, introduced a panel of fellow faculty members, administrators, and students to paint a vivid collective portrait of life at P&S. Speakers were Ronald E. Drusin’66, associate dean for curricular affairs; Ellen Spilker, director of student financial planning; Andrew G. Frantz’55, chairman of the Admissions Committee; Dr. Katherine G. Nickerson, associate professor of clinical medicine; Glenda Garvey’69, course director of the third-year medical clerkship; and Dr. Peter G. Gordon, director of the medical house staff training program. Students Candice Chen’01, Maximilian Soong’02, Sarah Nowygrod’03, and Jonah Essers’02 provided the “insiders” view.

After the program, the guest speaker, former chairman of urology and professor emeritus John K. Lattimer’38, treated luncheon guests to historical highlights at Washington Heights.

CLASS NEWS

By Marianne Wolff’52

1940
John T. Goodner retired from the practice of thoracic surgery at Memorial Sloan-Kettering Cancer Center in New York. He is a member of the Sovereign Military Order of Knights of Malta, American Radium Society, Society of Surgical Oncology, and the American Head and Neck Society.

1945
Mack L. Clayton was named Distinguished Professor of Orthopedics at the University of Colorado, where an anonymous donor endowed a chair in his name.

1946
William M. Manger is co-author (with R.W. Gifford) of “100 Questions and Answers about Hypertension,” an educational tool for the laity. Dr. Manger is chairman of the National Hypertension Association. He also runs a research laboratory at NYU. After a distinguished career in hematology and blood banking, Robert L. Rosenthal retired in June 2000. His research on the hematological effects of radiation was conducted at UC Berkeley, while his work on blood coagulation, which led to the original descriptions of Factor XI and its deficiency in acute promyelocytic leukemia, was carried out in New York.

1950
George Agzarian practices internal medicine with his two daughters, both associate professors at UCLA. All three members of this family are involved in teaching medical students and residents. Two of George’s eight grandchildren are also headed for careers in medicine.

1954
William F. Haynes Jr. received an M.A. degree in theology from La Salle University Graduate School of Religion in May 2001. He teaches cardiology to medical students at Robert Wood Johnson on a part-time basis. He also gives medical students lectures on “Soul and Science” and is co-authoring a book, with the chairman of religion at La Salle, dealing with different views of spirit and healing, from the perspectives of a physician and a theologian.

CAREER FORUM 2001

At Career Forum 2001, held April 16, 2001, three alumni and a member of the P&S faculty spoke frankly about the pros and cons of their chosen fields. The speakers were Yvonne Thornton’73, an obstetrician/gynecologist; Dr. William Middlesworth, assistant professor of surgery at P&S; Rebecca J. Kurth’87, an internist; and David C. Van’95, an emergency medicine specialist.

From left at Career Forum 2001: David Garrett’03, Yvonne Thornton’73, David C. Van’95, Shearwood Mcclelland Jr.’04, Salila Kurra’03, and Dr. William Middlesworth

REGIONAL PROGRAM

On March 30, 2001, T. Stephen Balch’70, a regional director of the Alumni Association, hosted a well-attended cocktail reception and dinner in conjunction with the annual meeting of the American College of Physicians at the Atlanta Hilton in Atlanta.
1960
The Cure for Lymphoma Foundation awarded its 1999 Key to the Cure Award to George P. Canelos.

1962
Peter F. Cohn has been elected president of the New York state chapter of the American College of Cardiology. He has been chief of cardiology at SUNY Health Sciences Center at Stony Brook for 20 years. The fourth edition of his textbook, "Silent Myocardial Ischemia and Infarction," was published early in 2000 (Marcel Dekker Inc.). Ian Nisonson, a practicing urologist, was named one of the “Best Physicians in South Florida” by Miami Metro Magazine. He recently completed a two-year term as president of the medical staff of Baptist/South Miami Hospitals.

1963
John Noble has been elected chairman of the Joint Commission on Accreditation of Healthcare Organizations for 2001. Professor of medicine and director of the Center for Primary Care at Boston University’s medical school, he served as chief of internal medicine at Boston City Hospital for 19 years. He also served as president of the Society for General Medicine and is a regent of the American College of Physicians-American Society of Internal Medicine.

1965
“Fatal Betrayal” is Bruce Forester’s sixth novel but represents the first of a new series of Mort and Millie suspense thrillers. Bruce is assistant clinical professor of psychiatry at P&S and pursues a private practice.

1966
In February 2001, Robert Carraway became chief of medicine at Hôpital Albert Schweitzer in Deschapelles, Haiti; this is a 120-bed hospital that provides primary/sole care for a population of 200,000 people. Howard H. Kaufman received a law degree from Georgetown University in 2000. He has retired from the practice of medicine.

1967
Following 25 years at Kaiser Hospital in Redwood City, Calif., most recently as chief of cardiology, Walter Berger is working toward his master’s degree in conservational biology at Stanford. He is also taking courses in humanities, religion, and music and is very much enjoying the life of a full-time student.

1968
Peter Smith, professor of clinical medicine at SUNY Health Science Center in Brooklyn, is chief of pulmonary medicine at Long Island College Hospital in Brooklyn.

1970
Z. Nicholas Zakov is president of the U.S. Eye Injury Registry. His private practice concentrates on vitreo-retinal diseases; he also travels and lectures all over the world. He is president of the U.S. Eye Injury Group and serves on four boards of directors and several committees in his field.

1974
Michael M. Krinsky, assistant clinical professor of neurology at the University of Connecticut, serves on the board of directors of the Hartford County Medical Association and is chairman of its legislative committee. He also serves on the board of directors of the Political Action Committee of the Connecticut State Medical Society. Allan Schwartz, the Harold Ames Hatch Professor of Clinical Medicine at P&S, is chief of cardiology at CPMC. He is actively involved in the integration of cardiology services into the new Columbia Cornell Heart Institute.

1975
Vincent R. Bonagura is director of allergy and immunology at the North Shore-Long Island Jewish Health System, Children’s Health Network. William C. Meyers is the new chairman of surgery at MCP Hahnemann University School of Medicine. He is a renowned liver surgeon who
helped develop minimally invasive and laparoscopic surgical procedures. Bill is also assistant dean for interdisciplinary studies at Hahnemann and serves as president of the American Association for the Study of Liver Diseases. Before joining Hahnemann he held academic positions at the University of Massachusetts and Duke.

1977
Frank Sacks was promoted to professor of cardiovascular disease prevention at the Harvard School of Public Health.

1978
Barbara Koppel has been appointed chief of neurology at Metropolitan Hospital in New York, having worked there since completing her residency. She is sufficiently fluent in Spanish to have been able to deliver a paper in Ecuador on women and stroke. Her husband, Dr. Timothy Pedley, is chairman of neurology at P&S.

1979
The Dallas County Medical Society gave its Aesculapius Award to Barbara Stark Baxter for her “continuing commitment to community service.” An allergist, she founded and heads the Agape Clinic, where she volunteers to see patients from the East Dallas community. Agape is Greek for “brotherly love.” The clinic has close ties with Grace Methodist Church in East Dallas and provides free medical care to the poor of the neighborhood. Barbara and her husband, David, have made Dallas their home for more than 20 years. They have three children. • Jeanne L. Leventhal, who holds a faculty position in psychiatry at Stanford, is associated with Northern California Kaiser Permanente. Her research interests involve psychiatric aspects of women’s health. One of her projects is “Best Practice on Mood and Menopause,” a national educational video series directed to physicians. In addition to seeing patients and conducting research, she is raising her small son.

1981
At a convocation at Mount Sinai School of Medicine in September 2000, Evan Flatow was honored for “exceptional achievements in research, patient care, and education” and named the first Bernard J. Lasker Professor of Orthopedic Surgery. • Karin Muraszko was featured in an article in the Detroit News. She practices pediatric neurosurgery at Mott Children’s Hospital at the University of Michigan Medical Center in Ann Arbor. She has a special place in her heart for patients with spina bifida, a condition with which she was born. Karin is married to an architect.

1986
Peter Aupperle was named director of geriatric psychiatry at Robert Wood Johnson Medical School. • May 2001 was the publication date of Barron Lerner’s book on the history of breast cancer, “The Breast Cancer Wars.” • Kevin Slawin was promoted to associate professor of urology at Baylor College of Medicine in Houston. He has been the director of the Baylor Prostate Center since joining the faculty full time in 1994. • Richard L. White practices surgical oncology in Charlotte, N.C. His particular interest is the use of immunotherapy in patients with malignant melanoma and those with renal cancer.

1987
Dawn McGuire has published her second book of poems, “Hands On” (Zyzzyva Publishing). She is CEO of a company that focuses on the treatment of Alzheimer’s disease. • Curtis P. Snook is in Iceland to help improve that country’s emergency services and to create a poison center. He has obtained grants to study all cases of poisoning in Iceland for one year. He reports that he enjoys exchanging information with Nordic and other European colleagues and admires the country’s natural beauty.

1991
Diana Contreras is the director of gynecological oncology at Texas Tech. She is married to her classmate, David Godfried; they have two children.
ACROSS
1 Doc
6 Smear tactics?
9 Cordage fiber source
14 Type of transferase
15 Important inhibitor
16 Substance ---
17 Calyx component
18 It precedes epinephrine
19 Campus leader
20 What “Double, double, toil and trouble” cause?
23 Oeillade
24 More fashionable
25 Like a bad wound
28 Decompression tube shape
29 Stalag resident
30 Tree-shaded walk
31 One in white
34 Culture ingredient
35 Miner surgery?
41 Soup pod
42 Entice
43 Bitter-ender
47 Exec.’s degree
48 Trifling amount
51 Form of sickness
52 St. Vitus dance
53 Sticker shock?
54 Like some glass
55 Form of cardiogram
56 This sounds like a medical specialty
57 Way to a man’s heart
58 Like some swans
59 Stalag resident
60 Decompression tube shape
61 Like some glass
62 Hospital helpers
63 Wistar subject
64 Like some swans
65 Frets
66 Hordeolum externum
67 --- raving mad

DOWN
1 Team animal
2 Surface
3 Doublet
4 Ditsy
5 --- -Cecil murmur
6 Apple dessert
7 Toss of --- (wager)
8 Cyrus the Great’s empire
9 Tuareg’s region
10 Heron’s cousin
11 Freudian division
12 Amino acid protein symbol
13 Biologist Szillard
21 Zeno, for one
22 Vinegar --- (nematode)
26 Laryngeal prominence man?
27 Suspicious of
29 Eclampsia forerunner
31 Damon or Dillon
32 Not a good way to feel
33 Erhard’s “thing”
35 North Atlantic food fishes
36 Steinbeck migrant
37 Information information
38 Recklessness
39 Surround
40 Apr. workhorse
44 What this word is not
45 Symbol for density
46 They may give at the office
48 Menelaus’ realm
49 Expulsion
50 Bring to light
53 Clerical wear
54 Ewer feature
56 De novo
57 Peckinpah and Donaldson
58 Adjuncts to an M.D.’s office
59 Miss’s partner

Answers in Next Issue

Answers to Previous Puzzle