The Institute Of Human Nutrition

print image     Email this page

Faculty and Staff

Nutritional and Metabolic Doctoral Training Faculty

Anthony W. FerranteAnthony W. Ferrante, Jr., MD, PhD.

Associate Professor of Medicine



MS, 1991 Albert Einstein College of Medicine of Yeshiva University
Ph.D., Albert Einstein College of Medicine of Yeshiva University
M.D., Albert Einstein College of Medicine of Yeshiva University

Research Interests

Research Summary
Large increases in fat mass lead to obesity and adversely alter blood pressure, insulin sensitivity, serum lipid profiles and cardiac function. The research in our laboratory focuses on identifying cellular and molecular mechanisms by which fat mass changes alter medically important traits, including insulin sensitivity and cardiac mass.

Research Activities
Mechanisms of Obesity Induced Complications Insulin sensitivity, lipoprotein homeostasis, blood pressure and cardiac mass are all adversely altered by large increases in adipose mass. However, the mechanisms by which obesity induces these pathologic changes are poorly defined. The primary goal of research in my lab is identifying mechanisms by which alterations in adiposity modify medically important quantitative traits. We have developed a technique, quantitative trait-transcript (QTT) analysis, that identifies genes whose expression correlates with quantitative traits.

Using QTT analysis to study of body mass and adipose tissue gene expression, we have identified a previously unrecognized macrophage-like cell within adipose tissue. The population of these adipose tissue macrophages (ATM’s) increases with increasing obesity, so that in the most severely obese mice >50% of cells within visceral adipose depots are macrophages. Furthermore, ATM’s are preferentially found in visceral adipose tissue where they form multinucleated giant cells in severe obesity. These cells may provide missing mechanistic underpinnings for the production of pro-inflammatory molecules found in obesity and implicated in obesity associated insulin resistance and atherosclerosis. Current work focuses on defining the roles that ATM’s play in regulating adipocyte physiology and in increasing levels of circulating pro-inflammatory cytokines observed in obesity and insulin resistance.

Cardiac hypertrophy (CH) is another common complication of obesity. Our work in obese mice suggests that the molecular mechanism by which obesity induces CH are distinct from those typically seen in hemodynamically induced CH. We have shown that CH in obesity is associated with activation of SREBP1c dependent gene transcription (a lipogenic program), while regression of CH induced by weight loss or leptin treatment is associated with activation of a PPAR-alpha transcriptional program (an oxidative program). Our current efforts are aimed at defining the mechanisms that regulate cardiac mass in parallel with energy balance.

Recent Publications - Pubmed

Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, Kousoulas KG, Rogers PM, Kesterson RA, Thearle M, Ferrante Jr AW, Mynatt RL, Burris TP, Dong JZ, Halem HA, Culler MD, Heisler LK, Stephens JM, Butler AA  Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism Cell Metabolism 2008 8:468-81

Kaufman BD, Desai M, Reddy S, Osorio JC, Chen JM, Mosca RS, Ferrante Jr AW, Mital S. Genomic profiling of left and right ventricular hypertrophy in congenital heart disease J Card Fail. (2008) 14:760-7

Ortega E, Xu X, Koska J, Francisco AM, Scalise M, Ferrante Jr AW, Krakoff JA. Macrophage content in subcutaneous adipose tissue: associations with adiposity, age, inflammatory markers, and whole-body insulin action in healthy individuals  Diabetes 2009

bottom bar

Contact Us

630 West 168th Street, PH1512
Columbia University Medical Center
New York, NY 10032
(212) 305-4808