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Abstract 

Recent studies identifying expression quantitative trait loci (eQTL) in immune cells have 

uncovered important links between disease risk alleles and gene expression trends in monocytes, 

T cells, and other cell types.  However, these studies are generally done with young, healthy 

subjects, limiting the utility of their findings for age-related conditions such as Alzheimer’s 

disease (AD).  We have performed RNA sequencing on four T cell subsets in genome-wide 

genotyped and well-characterized AD subjects and age- and sex-matched controls from the 

Religious Orders Study/Memory and Aging Project.   We correlated gene expression data with 

AD neuropathological traits, and with single nucleotide polymorphisms (SNPs) to detect eQTLs.  

We identified several significant genes involved in T cell senescence and cytotoxicity, consistent 

with T cell RNA sequencing studies in aged/AD cohorts.  We identified unexpected eQTLs 

previously associated with neuropsychiatric disease traits.  Finally, we discovered that pathways 

related to axon guidance and synaptic function were enriched among trans-eQTLs in coding 

regions of the genome.  Our data strengthen the potential link between T cell senescence and 

age-related neurodegenerative disease.  In addition, our eQTL data suggest that T cell 

phenotypes may influence neuropsychiatric disorders, and can be influenced by genes involved 

in neurodevelopmental processes.  
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Introduction 

Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disease of aging.  

While the early-onset form of AD is familial, involving rare mutations in the amyloid precursor 

protein (APP) and/or the presenilins, over 90% of AD cases are late-onset and sporadic (1).  

Early neuropathological findings consistently identified extracellular plaque, composed of the 

amyloid beta fragment of APP, and neurofibrillary tangles, composed of tau protein aggregates, 

in post-mortem AD brain samples (2).  More recently, genetic and other studies have highlighted 

markers of inflammation and immunity as important components of AD progression.  Microglia, 

the resident immune cells of the central nervous system (CNS), contribute to many important 

homeostatic processes in the brain and express a handful of key AD risk genes (3,4). 

While microglia are currently thought to accomplish most of the immune surveillance in the 

healthy brain, several neurological conditions are known to involve an influx of peripheral 

immune cell types into the CNS, including blood-derived monocytes and T cells (5,6,7).  An 

immunohistochemical study hinted at a correlation between T cell influx and tau pathology in 

AD, suggesting that this phenomenon may occur in mid- to late-stage neurodegeneration (8).  

Recently, using single-cell sequencing technology, we have identified a population of cytotoxic 

T cells in post-mortem and surgically resected brain tissue from individuals with epilepsy or AD; 

many of these T cells express markers of late differentiation and senescence (9).  Others have 

found similar results in cerebrospinal fluid of AD patients (10).  A number of researchers have 

employed various methods to modulate T cell populations in mouse models of AD.  Results from 

these studies often vary based on the model used, disease stage, T cell subtype, or T cell antigen 

specificity; however, these studies implicate T cells in disease regulation and pathogenesis 

(11,12,13). 
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Effector T cells are generally classified as either cytotoxic (CD8+) or “helper” (CD4+) T cells.  

CD8+ T cells can directly kill target cells, usually by Fas-FasL signaling, release of cytotoxic 

enzymes or proinflammatory enzymes, or a combination of these (14).  CD8+ T cells employ 

these tactics upon encountering intracellular antigens presented by the major histocompatibility 

complex (MHC) class I, usually in the context of viral infection or tumor growth (15,16).  CD4+ 

T cells, on the other hand, generally play a more supportive role, participating in cytokine 

signaling to stimulate other adaptive or innate immune cells (17).  Common subtypes of CD4+ T 

cells are traditionally delineated by the cytokines they release (18).  Th1 cells release pro-

inflammatory cytokines like interferon (IFNg) or tumor necrosis factor (TNFα), Th2 produce 

generally anti-inflammatory cytokines such as interleukin (IL)-4 and IL-13, Th17 is known for 

IL-17 release, and regulatory T cells (Tregs) secrete cytokines with a more immunosuppressive 

function, including IL-10 and TGF-β (17,19).  T cells are considered “naïve” before 

encountering their specific antigen.  Once primed with an antigen, T cells divide and 

differentiate, and long-lived memory T cells are developed with the capacity to expand rapidly in 

response to the same antigen (20).  Naïve T cells have, until recently, been considered 

synonymous with CD45RA-expressing T cells, and memory T cells with CD45RO+ cells.  

However, a subset of memory T cells, termed TEMRA, is now known to lose CD45RO 

expression and re-express CD45RA (21). 

Thus far, few groups have explored possible genetic underpinnings of T cell phenotypic changes 

in aging and AD.  Several expression quantitative trait loci (eQTL) studies in AD patients use 

brain tissue samples (22, 23), providing helpful spatial context, but cannot be utilized to describe 

cell type-specific changes.  Raj et al. (24) investigated eQTLs in monocytes and naïve CD4+ T 

cells; and while their analysis focused on AD genetic variants, only healthy young subjects were 
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used in the study, and any T cell subtype-specific effects would escape detection.  In this study, 

we aim to better characterize the genetic risk factors behind T cell gene expression changes in 

AD subjects and controls.  We conducted RNA sequencing of both CD4+ and CD8+ T cells 

sorted from peripheral blood mononuclear cells from patients in the ROSMAP cohort (25).  We 

further divide the two main T cell subsets based on the expression of CD45RO, resulting in the 

following 4 subsets:  CD4+CD45RO-, CD4+CD45RO+, CD8+CD45RO-, and CD8+CD45RO+ 

T cells.  Using this sequencing data, we identified three gene co-expression modules, and 

correlated gene expression with AD pathological traits and with whole genome sequences to 

detect eQTLs.  We discovered that several genes commonly associated with cytotoxicity and 

senescence were found in association with AD neuropathological traits, in co-expression 

modules, and, unexpectedly, in eQTLs associated with neuropsychiatric disease. 
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Results 

Comparison of Gene Expression Between T Cell Subsets and AD Neuropathological Traits 

To better understand the phenotypic characteristics of CD4+ and CD8+ T cells in AD subjects, 

we leveraged cryopreserved peripheral blood mononuclear cells (PBMCs) from 48 AD patients 

and 48 age- and sex-matched control subjects in the ROSMAP cohort (Table 1, Figure 1a).  We 

used flow cytometry to sort live naïve and memory CD4+ and CD8+ T cells based on the 

expression of CD45RO. Briefly, 96 cryopreserved PBMC samples were thawed and were stained 

with the following surface markers: CD3, CD4, CD8, and CD45RO. Four T cell subsets were 

sorted from each subject: CD3+CD4+CD45RO-, CD3+CD4+CD45RO+, CD3+CD8+CD45RO-, 

and CD3+CD8+CD45RO+ T cells.  Cells were lysed to collect RNA for 3’-digital gene 

expression (3’-DGE) sequencing (see Methods, and Supplementary Table 1 for raw data).   We 

compared gene expression between the four T cell subsets, and between AD and control subjects 

within each subset.  Surprisingly, very few genes were differentially expressed when comparing 

AD and age- and sex-matched healthy control subjects within a given T cell subset (Figure 1b).  

Most of the significant differences in gene expression were found in comparisons between T cell 

subsets, especially comparing CD4+ to CD8+, regardless of AD status. 

To derive further meaning from gene expression data, we tested the correlation of each gene’s 

expression with different neuropathological measurements of AD severity from ROSMAP.  

These include Braak staging of tau tangle pathology, pathological or clinical diagnosis of AD 

(PathoAD/ClinAD), global AD pathology burden (Gpath), and the presence of amyloid beta 

plaque or tau tangles.  Interestingly, several genes involved in cytotoxicity, inflammation, and T 

cell activation arose (Figure 1c).  We identified hundreds of genes in all four T cell subsets that 

have a nominal relationship with one or more AD neuropathological traits (for a full list, see 
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Supplementary Table 2).  Of note, several granzyme genes were common in these associations, 

as well as senescence-related genes such as GNLY and NKG7, AD risk genes such as CR1 and 

BIN1 (26,27), and markers of inflammation and T cell activation such as NFKB1 and CD28 

(28,29).  While the role played by senescent or pro-inflammatory T cells in pathological 

mechanisms of AD is only beginning to come to light, other studies have shown an upregulation 

of several of these senescence and late activation markers in T cells from aged individuals and 

AD patients (10,30,31). 

[Insert Figure 1] 

 

Gene Co-Expression Network Analysis 

We also sought to detect broader trends of gene expression and co-expression across subjects.  

To this end, we used weighted gene co-expression network analysis (WGCNA) to detect co-

expression modules whose collective expression differed consistently across samples.  We found 

three such modules, the first of which was most highly expressed in memory CD8+CD45RO+ T 

cells, and the third most upregulated in naïve CD8+CD45RO- T cells (Figure 2a, see 

Supplementary Figure 1 for module validation).  Module 1 featured several genes associated 

with IL-10 signaling, including TSC22D3, an anti-inflammatory transcription factor that is 

known to be stimulated by glucocorticoids and interleukin 10 (32), that we previously found to 

be highly expressed in a cluster of CD8+ T cells in AD and epilepsy (9).  Module 2 included 

multiple genes associated with ribosomal function, suggesting an overall association with protein 

synthesis.  Module 3 contained several genes often associated with senescence and cytotoxicity, 

including KLRF1, KLRG1, GZMA, GZMB, GZMH, GZMK, CST7, GNLY, and NKG7 

(Supplementary Table 3, 33,34,35,36).  Interestingly, module 1 and module 3 genes were 

among those detected in association with AD neuropathological traits (Figure 1c). 
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We conducted unranked pathway analysis using Enrichr on all genes from each co-expression 

module, with GO Biological Processes as the input database.  Upregulated pathways among 

module 1 genes include responses to cytokines such as IL-2 and GM-CSF (Figure 2b), while 

module 3 involved pathways related to IL-12 and IFN-γ signaling, as well as antigen processing.  

IL-12 is classically understood to promote the differentiation of Th1 type CD4+ T cells (37), 

while IFN-γ is a potent part of the antiviral immune response (38).  These findings suggest that T 

cells in aged individuals exhibit a senescent pro-inflammatory phenotype that may be implicated 

in viral clearance.  

[Insert Figure 2] 

 

Expression Quantitative Trait Loci 

Recent studies have advanced our understanding of the genetic underpinnings of AD pathology 

by detecting links between genetic variants and quantitative traits such as MRI imaging metrics 

(39), gene expression from various cell types (24,40,41), or protein levels in brain, CSF, and 

plasma (42).  To better elucidate the genetic basis of T cell phenotypic changes in AD, we 

correlated gene expression with genomic data previously generated from ROSMAP participants 

to identify eQTLs (for code used in this analysis, see supplementary file 1).  We first tested for 

cis-eQTL associations, involving single nucleotide polymorphisms (SNPs) within 1 Mb of a 

gene’s coding region (a standard cutoff for differentiating cis-eQTLs from trans-eQTLs; see 24, 

41, 43, 50, 57).  We defined significant cis-eQTLs as those with a false discovery rate under 

0.05, whose gene was expressed in at least 20% of individuals with a maximum expression count 

of 3 or more (for a full listing of cis-eQTLs in all T cell subtypes, see Supplementary Table 4).  

Trans-eQTLs were defined by the SNP and gene coding region at least 1 Mb apart, or on 

different chromosomes, and significance at FDR<0.05.  Tens of thousands of significant trans-
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eQTLs were detected in each T cell subset (full listing in Supplementary Table 5), with over 

10,000 unique SNPs and ~5,000 unique genes in each subset (Table 2).   

[Insert Table 2] 

Distribution and subset specificity of trans-eQTLs 

We began our exploration of the eQTL data by examining how eQTLs distributed across the 

genome, and across T cell subsets.  Most genes whose expression was correlated with trans-

eQTLs were shared across all T cell subsets; an unsurprising result, considering the similarity in 

gene expression profiles between CD4+ and CD8+ T cells.  However, the SNPs themselves were 

subset-specific in their association with genes (Figure 3a), suggesting that genetic variability 

driving gene expression changes may be state-dependent.  We visualized the distribution of 

trans-eQTL across the genome by generating Manhattan plots to summarize the location of SNPs 

found in trans-eQTL by chromosome (Figure 3b).  Highly significant (-log10(p) > 14) SNPs are 

annotated on the plot, but none were found to have associations with disease traits. 

[Insert Figure 3] 

Disease association of trans-eQTLs 

Owing to the age of our cohort, we recognized that gene expression changes in the T cell subsets 

may be driven by variants associated with neurological or immunological conditions other than 

AD.  To assess disease association, we compared trans e-QTLs to SNPs in the GWAS catalog 

database (see Supplementary Table 6), restricting to traits in four disease categories (see 

Methods and Supplementary Table 7 for categorization of GWAS traits).  Several dozen SNPs 

among the trans-eQTLs have been shown to associate with traits related to immune function, 

neuropsychiatric conditions, autoimmune disease, or neurodegenerative disease, in genome-wide 
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association studies (Figure 4a).  Most of these SNPs were trans-eQTLs from CD4+CD45RO+ 

cells, with neuropsychiatric conditions featuring prominently among the disease-associated SNPs 

in this cell type.  Circos plots display the distribution of these GWAS catalog-associated trans-

eQTLs across the genome (Figure 4b).  Interestingly, among the disease-associated eQTLs in 

CD4+CD45RO+ cells were several immunosenescence and cytotoxicity-related genes, including 

GNLY, GZMH, NKG7, and PRF1, all of which were regulated by SNPs associated with anxiety.   

[Insert Figure 4] 

Biological pathway enrichment of trans-eQTLs 

Finally, we sought to highlight overall functional trends in both the SNPs and the differentially 

expressed genes of the trans-eQTLs.  In this way, we could better describe the mechanisms 

behind regulation of T cell gene expression in AD, as well as the nature of phenotypic changes 

specific to each T cell subset.  To elucidate functional and mechanistic processes in trans-eQTLs, 

we conducted pathway enrichment analysis.  For SNPs from the trans-eQTL, we first determined 

SNPs found within a gene (between the transcription start site and end site), then ran unranked 

pathway analysis on those genes with Enrichr.  Unexpectedly, these genes were overwhelmingly 

found in pathways related to neuronal development, axon guidance, and synaptic transmission in 

all four T cell subtypes (Figure 5).  Pathway analysis of genes from the trans-eQTL returned GO 

terms related to general RNA processing and translation in all four T cell subsets 

(Supplementary Figure 1). 

[Insert Figure 5] 
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Discussion 

This study is the first, to our knowledge, to examine the genetic underpinnings of T cell 

expression phenotypes in aged individuals and AD patients.  Our use of CD45RO marker in cell 

sorting yields a preliminary look into how naïve and memory T cell phenotypes may differ from 

each other in an AD context.  Furthermore, the neuropathological data collected from the 

ROSMAP cohorts allows us to correlate T cell expression data directly with AD-relevant traits.  

These findings allow us to consider the genetic basis for changes in T cell behavior during AD, 

and how T cell function and CNS AD pathology may influence each other. 

From the expression data alone, our co-expression analyses highlight genes with key functional 

relevance, which may contribute to the neurodegenerative process.  Module 3 is especially 

enriched in genes with direct cytotoxic function, such as granzyme genes, and others that are 

upregulated in T cells that have become senescent and pro-inflammatory, such as GNLY and 

several KLR family members.  Module 1, conversely, includes several genes that participate in 

IL-10 signaling, which is classically understood to be anti-inflammatory, especially for T cells.  

Interestingly, module 3 is most highly associated with the CD8+CD45RO- subset, suggesting a 

more naïve phenotype for these cytotoxic and senescent T cells, although this expression profile 

may arise from the late-differentiation TEMRA phenotype as well, which is also CD45RO-.  

Several module 1 and module 3 genes also appear in association with AD neuropathological 

traits, as do some risk genes for AD and Parkinson’s disease (Fig. 1b), although these are only 

nominally significant. 

Our eQTL analyses resulted in tens of thousands of trans-eQTL for all four T cell subsets, 

despite a relatively small sample size.  The trans-eQTL involved over 10,000 unique SNPs and 

5,000 unique genes in each T cell subtype.  Existing studies of eQTL in T cells often detect SNPs 
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that are risk variants for autoimmune disease, as might be expected.  Strikingly, after correlating 

SNPs among our trans-eQTL with disease-associated SNPs, we found many that matched traits 

related to neuropsychiatric conditions such as schizophrenia and depression.   Because few 

studies have examined potential connections between T cell phenotypes and psychiatric 

disorders (44), these associations may warrant a further look into how T cells may be altered, or 

alter nervous system function, in these conditions. 

When we determined where SNPs were located among the T cell trans-eQTL, we were surprised 

to find that SNPs within gene coding regions were often found within genes related to axon 

guidance and neuronal process growth, as highlighted in our pathway analysis results.  While it 

is important to focus on how T cells might drive neuronal death and dysfunction in conditions 

like AD, these findings suggest that genes that shape nerve growth during development and 

throughout life may also serve to regulate T cell behavior, however distantly.  Although research 

examining the interaction between T cells and neural development is in its early stages, 

microglia have been shown to play an active role in neural circuit formation and patterning in 

utero and throughout life (45).  Mice genetically altered to lack T cells have shown differences in 

brain morphology (46), suggesting that T cells may participate in shaping the developing brain, 

and vice versa. 

Our results echo findings from recent single-cell sequencing studies in T cells from AD patients 

and aged individuals.  We recently detected a cluster of CD8+ T cells with high expression of 

KLRD1, KLRG1, GNLY, NKG7, and several granzyme genes in immune cells isolated from 

surgically resected and post-mortem tissue (9).  This is potentially consistent with the 

characterization of a clonally expanded population of CD8+ T cells within the cerebrospinal 

fluid of AD patients, whose expression of these genes correlates with their degree of clonality 
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(10).  CD8+ T cells from peripheral blood of AD patients have also shown levels of NKG7, 

GZMB, and GNLY expression that match natural killer cells (30).  Finally, another study of 

blood-derived T cells in supercentenarians suggests that this cytotoxic profile is not limited to 

disease.  Hashimoto et al. (29) found a cluster of cytotoxic CD4+ T cells in supercentenarians 

with many of these genes upregulated, especially in cells expressing late-differentiation markers.  

Our findings from co-expression network analysis confirm the trend of cytotoxic and senescent T 

cells in aging and AD.  The appearance of many of these genes within our significant eQTL 

build upon previous research, by suggesting a contribution of genetic variants to these T cell 

phenotypes.  Ascertaining the role of genetic variability behind age- or disease-related T cell 

cytotoxicity could lead to more personalized treatments for neurodegeneration and other 

conditions. 

To that end, the detection of disease-associated eQTL in an aged and AD cohort warrants a 

closer look into the interindividual variability in T cell responses to neurodegeneration.  Animal 

studies designed to examine T cell behavior in CNS disease, or test a T cell-targeted therapeutic 

strategy in a preclinical model, have yielded widely varying results for AD.  Even within a T cell 

subtype such as regulatory T cells, different studies have found reduced (12) or advanced (47) 

pathology upon depletion of Tregs.  Th1-type CD4+ T cells specific for amyloid beta failed to 

lower amyloid levels in the hippocampus in one mouse model study (48), while they improved 

amyloid clearance by microglia in another (13), and amyloid-specific Th2 cells accomplished 

symptom reduction in AD mice even when introduced outside the CNS (11).  While we know 

that T cell infiltration into the CNS occurs in AD (8), more research is needed before we can 

better understand which T cell functions are helpful and hurtful in neurodegenerative disease. 
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Precision medicine requires a deeper look into the source of genetic and environmental 

variability in T cell behavior, and T cell antigen specificity, during neurodegenerative disease.  

Several recent eQTL studies have begun to detail key genes and pathways contributing to 

differential T cell phenotypes.  Raj et al. (24) conducted a large eQTL study of monocytes and 

naïve CD4+ T cells in young healthy subjects, finding that AD-associated variants among the 

cis-eQTL were mostly found in monocytes, while T cells cis-eQTL unsurprisingly held many of 

the autoimmune disease-related variants.  Ye et al. (49) focused mainly on transcript levels of 

cytokines from differentiated CD4+ T cells, but also conducted limited eQTL analysis.  An 

extensive multi-omic study of several immune cell types, including T cells, by Chen et al. (39) 

uncovered many variants related to autoimmune disease.  Kasela et al. (40) included CD8+ T 

cells as well as CD4+, and also detected autoimmune disease-related variants that affected the 

IRF1 and STAT1 signaling pathways.  Bossini-Castillo et al. (50) conducted a study using Tregs 

and focused especially on variants that could also be drug targets, finding several eQTL related 

to IL-10 signaling.  Most recently, Nathan et al. (51) used single-cell sequencing data from 

resting memory T cells to examine the interaction between eQTL and a wide variety of T cell 

states, an approach that will be vital in future studies, given the current expansion of single-cell 

sequencing technology. 

These studies are an invaluable resource to mine genetic and epigenetic changes in T cells.  

However, their utility in elucidating how genetic variants may alter T cell behavior in age-related 

disease is limited, owing to the use of young, healthy subjects for sample collection.  While our 

study is the first to use cells from aged and AD subjects to detect eQTL, it represents only a 

preliminary look into the complex network of T cell regulation in AD.  Additional studies are 

warranted with a higher number of participants, to yield sufficient statistical power.  We also 
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recognize that the unique contribution of TEMRA cells to T cell phenotypes in neurodegener-

ation, as elaborated by Gate et al. (10) and others, may have been obscured in our data, due to 

our sorting strategy.  We plan to enrich the existing dataset with in vitro and in vivo studies to 

examine key genetic hits in AD models.  With our planned follow-up experiments and others, we 

expect to make progress towards identifying causality in T cell genetic variants contributing to 

AD and other neurodegenerative diseases. 
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Materials and Methods 

The Rush Religious Orders (ROS) Study and Rush Memory and Aging Project (MAP) 

ROS, started in 1994, enrolls Catholic priests, nuns, and brothers, without known dementia, aged 

53 or older from more than 40 groups in 15 states across the USA. Since January 1994, more 

than 1,450 participants completed their baseline evaluation, of whom 87% are non-Hispanic 

white, and the follow-up rate of survivors and autopsy rate among the deceased both exceed 

90%. MAP, started in 1997, enrolls men and women without known dementia aged 55 or older 

from retirement communities, senior and subsidized housing, and individual homes across 

northeastern Illinois. Since October 1997, more than 2,200 participants completed their baseline 

evaluation, of which 87% were non-Hispanic white. The follow-up rate of survivors exceeds 

90% and the autopsy rate exceeds 80%.  Both studies were approved by an Institutional Review 

Board of Rush University Medical Center. All participants signed informed consent for detailed 

annual clinical evaluation, an Anatomic Gift Act, and a repository consent to allow their data and 

biospecimens to be share. All ROSMAP participants agree to organ donation at death. A subset 

of 450 ROS and all MAP participants agreed to annual blood draw. Cryopreserved PBMC were 

stored at baseline and annually from 2008 to present.  More detailed descriptions of ROS and 

MAP can be found in prior publications (25).  ROSMAP resources can be requested at 

https://www.radc.rush.edu.  

PBMC from 96 study autopsied participants were used in this study.  48 subjects were clinically 

and/or pathologically diagnosed with AD, while 48 subjects without dementia served as controls. 

Brain tissue from each subject was analyzed post-mortem to detect pathological signs of neuritic 

plaques and neurofibrillary tangles. 
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PBMC Isolation, Cell Sorting, and RNA Extraction 

Peripheral blood mononuclear cells (PBMCs) were initially separated after collection in a 

yellow-top ACD tube, and later by Ficoll-Paque PLUS (GE Healthcare, Piscataway, NJ) gradient 

centrifugation, which markedly improved yield. PBMCs were frozen at a concentration of 1-

3×10
7
 cells/ml in 10% DMSO (Sigma-Aldrich, St. Louis, MO)/90% FBS (Atlanta Biologicals, 

Lawrenceville, GA). After thawing, PBMCs were washed in 10 ml PBS. PBMCs were stained 

with monoclonal antibodies against human CD3, CD4, CD8, and CD45RO (BD Biosciences) in 

PBS plus 1% FBS. The following four T cell subsets were sorted by high-speed flow cytometry 

with a FACS Aria (BD Biosciences) to typically >98% purity in postsort analysis: 

CD3+CD4+CD45RO-, CD3+CD4+CD45RO+, CD3+CD8+CD45RO-, and 

CD3+CD8+CD45RO+. Total RNA was extracted using buffer TCL (Qiagen). 

Digital Gene Expression (DGE) 3’ RNA-seq 

The RNA-seq libraries were prepared according to the Single Cell RNA Barcoding and 

Sequencing method originally developed for single cell RNA-seq (52) and adapted to extracted 

total RNA. Briefly, Poly(A)+ mRNA from extracted total RNA were converted to cDNA 

decorated with universal adapters, sample-specific barcodes, and unique molecular identifiers 

(UMIs) using a template-switching reverse transcriptase. Decorated cDNA from multiple 

samples were then pooled, amplified (10 PCR cycles), and prepared for multiplexed sequencing 

using a modified transposon-based fragmentation approach that enriched for 3′ ends and 

preserved strand information.  RNA was sequenced using the Illumina HiSeq at the Broad 
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Institute’s Broad Technology Labs and the Broad Genomics Platform using the High-throughput 

3’ Digital Gene Expression (DGE) library (52). 

Gene Expression Quality Control and Differential Expression Analysis 

Quality control on DGE was applied at sample and gene level. Genes with maximum cell count 

value of at least three and non-zero values in over twenty percent of samples were included in 

differential expression analysis. Expression values were normalized to counts per million (CPM). 

We correlated gene expression with AD and related neuropathological traits including a) clinical 

diagnosis of dementia, b) autopsy confirmed diagnosis of AD, c) global pathology defined as 

global measure of pathology based on the scaled scores of five brain regions, d) Braak Stage 

(53), e) PHFtau tangle density across eight brain regions, and f) area occupied by β-amyloid 

across eight brain regions. The EdgeR package in R (54) was used to conduct differential 

expression. Voom transformation (55) was applied to gene expression data and regression 

analysis was used to test association with the AD and neuropathological traits. Models were 

adjusted for age at death, sex, and total cell counts for each sample. Significant genes were 

determined at FDR≤0.05. 

Genotyping and Imputation. 

Subjects from the ROS and MAP cohorts imputed dosage values were used in our study. In these 

cohorts, DNA was extracted from whole blood or frozen post-mortem brain tissue. Genotype 

data was generated using the Affymetrix Genechip 6.0 platform at the Broad Institute’s Genetic 

Analysis Platform or the Translational Genomics Research Institute. Both sets of data underwent 

the same quality control (QC) analyses in parallel using the PLINK toolkit 

(http://pngu.mgh.harvard.edu/~purcell/plink/) and quality controlled genotypes were pooled. The 
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QC process included a principal components analysis using default parameters in EIGENSTRAT 

(56) to identify and remove population outliers. Imputation in ROS and MAP was performed 

using MACH software (version 1.0.16a) and HapMap release 22 CEU (build 36). 

Gene co-Expression Module Assembly 

To identify modules of co-expressed genes and their associations with cell types and traits, we 

applied weighted gene co-expression network analysis (WGCNA, 57) to the sorted cell RNA-seq 

data. Sample expression values were normalized first by randomly subsampling to 10,000 

transcripts, followed by normalization to counts per million (CPM). These normalized values 

were then used as input to WGCNA, using the top 3000 genes with highest % CV and the 

following WGCNA parameters: power = 6, TOMtype = “unsigned”, minModuleSize=30, and 

mergeCutHeight=0.25. This yielded three modules (apart from the “grey” or unassigned gene 

module), whose eigengenes were then used for association analyses with cell classes and disease 

traits. 

Expression Quantitative Trait Loci (eQTL) Testing 

We computed eQTLs with common single nucleotide polymorphisms (SNPs) (minor allele 

frequency > 0.1).  First, we identified independent SNPs across the genome by pruning for LD 

(R
2
 <0.2 between all pairs of SNPs). Then, we used the MatrixeQTL (58) to test for associations 

of SNPs with gene expression in each T-cell subtype independently. Association tests were 

adjusted for age at death, sex, and clinical AD status. Significant pairings (eQTLs) were 

classified as cis (SNPs within 1 Mb of the gene) or trans (SNPs at least 1 Mb away from the 

transcription start site or on a different chromosome).  Significant eQTLs were determined at a 

false discovery rate≤0.05, calculated independently for the cis and trans-eQTLs. 
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Venn Diagrams and Manhattan plots for trans eQTLs 

Venn diagrams were assembled using the VennDiagram package in R (59) with lists of unique 

genes and unique SNPs from each of the four T cell subsets.  The qqman package (60) was used 

to create Manhattan plots of SNPs from the trans-eQTL.  SNPs with a p-value under 1 x 10
-14

 

were annotated manually on the Manhattan plot. 

GWAS Catalog Analysis 

We downloaded the GWAS catalog v1.0.2 with annotation for SNPs and genotyping arrays. The 

catalog was filtered to retain studies of traits falling into four categories: a) immune, b) 

autoimmune, c) neurodegenerative, and d) neuropsychiatric. Significant cis- and trans-eQTLs 

were cross-referenced with GWAS catalog entries based on their dbSNP IDs. Genes that 

harbored eQTLs or whose expression was influenced by genetic variation in the four disease 

categories were further prioritized for pathway analysis. 

Pathway Analysis 

Pathway analysis was done using the enrichR package in RStudio (61, 62, 63).  Unranked gene 

lists from the co-expression modules or from trans-eSNPs in coding regions were used as input.  

GO Biological Processes 2021 was used as the database (64, 65).  The enrichr function was used 

to calculate the most highly enriched GO pathways represented by the input genes.  Dot plots 

were generated from the enrichr results using the PlotEnrich function and modified with the 

ggplot2 package. 

Statistical Methods 
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Multiple testing correction for differential gene expression, eQTL detection, and pathway 

analysis was done by calculating the false discovery rate and reporting results with an adjusted p-

value and false discovery rate less than 0.05.  When comparing gene expression with AD 

neuropathological traits in figure 1c, results were reported as nominal p-values with no multiple 

testing correction.  A full list of summary statistics is available upon request.  
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Tables 

Number of subjects 96 

Mean age at blood draw ± SD 79.7 ± 6.71 

Women 40 (41.6%) 

Number with autopsies 53 (55.2%) 

Number with AD diagnosis based on pathology 16 (16.7%) 

Number with AD diagnosis based on clinical signs 13 (13.5%) 

Number with both clinical and pathological AD diagnosis 19 (19.8%) 

 

Table 1:  Demographic summary of ROSMAP subjects used in the study, with data on age, 

sex, pathological AD diagnosis, and clinical AD diagnosis. 

T cell subset 
# of cis-

eQTL 

Cis-

eQTL 

unique 

SNPs 

Cis-

eQTL 

unique 

genes 

# of 

trans-

eQTL 

Trans-

eQTL 

unique 

SNPs 

Trans-

eQTL 

unique 

genes 

CD4+CD45RO- 37 32 23 43721 16330 5234 

CD4+CD45RO+ 14 14 14 32550 12246 5224 

CD8+CD45RO- 5 5 5 26315 11293 4566 

CD8+CD45RO+ 32 31 23 64281 19318 5090 

 

Table 2:  Total numbers of cis- and trans-eQTL, including unique SNPs and genes, among 

the four T cell subsets studied. 
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Abbreviations 

3’-DGE: 3’ digital gene expression 

AD: Alzheimer’s disease 

ClinAD: Clinical diagnosis of Alzheimer’s disease 

CNS: Central nervous system 

CSF: Cerebrospinal fluid 

DEG: Differentially expressed gene 

eQTL: Expression quantitative trait loci 

FBS: Fetal bovine serum 

FDR: False discovery rate 

Gpath: Global measurement of Alzheimer’s disease pathology 

GO: Gene ontology 

GWAS: Genome-wide association studies 

IFN: Interferon 

IL: Interleukin 

MRI: Magnetic resonance imaging 

PathoAD: Pathological diagnosis of Alzheimer’s disease 

PBMC: Peripheral blood mononuclear cells 

PBS: Phosphate-buffered saline 

PCR: Polymerase chain reaction 

RNA: Ribonucleic acid 

ROSMAP: Religious Orders Study/Memory and Aging Project 

SNP: Single nucleotide polymorphism 
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TEMRA: T effector memory RA (re-expressing CD45RA) 

TNF: Tumor necrosis factor 

TGF: Transforming growth factor 

UMI: Unique molecular identifier 

WGCNA: Weighted gene co-expression network analysis 
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Legends to Figures 

Figure 1:  Patterns of T cell gene expression, co-expression, and correlation with AD 

pathological traits.  a) Overview of study design, including number of AD and control subjects, 

cell sorting strategy, and data collection.  Created with Biorender.com.  b) Heatmap displaying 

numbers of differentially expressed genes (DEGs) when compared between given cell types and 

AD status. n = 96, FDR-adjusted p-value < 0.05.  c) Selected genes (with immune or disease 

significance) associated with AD pathological traits (shape legend shown at top right) at a 

nominal p < 0.05 for each cell type, arranged according to the cellular localization of protein 

product. 

Figure 2:  Relative abundance of WGCNA co-expression modules by cell type and pathway 

analysis.  a) Relative expression of modules 1, 2, and 3 are shown for four T cell subtypes (red = 

CD4+CD45RO-, green = CD4+CD45RO+, cyan = CD8+CD45RO-, magenta = 

CD8+CD45RO+).  b)  Results of Enrichr pathway analysis on modules 1, 2, and 3.  Dot size 

reflects the number of module genes in a given pathway, location on the X axis represents the 

proportion of the GO pathway represented by module genes, dot color represents p-value.  Terms 

on the left are from the GO Biological Processes 2021 database. 

Figure 3:  Distribution of trans-eQTL across the genome and between T cell subtypes.  a) 

Venn diagrams showing distribution of unique genes (top) and SNPs (bottom) among the four T 

cell subsets.  Genes found in trans-eQTL are mainly shared among all T cells, while SNPs are 

more subtype-specific.  b) Manhattan plots showing the distribution of SNPs from the trans-

eQTL in each cell type, with SNPs at –log10(p) > 14 annotated. 

Figure 4:  Disease association of trans-eQTL.  a) Stacked bar graph showing numbers of trans-

eQTL whose SNP is found to associate with certain categories of disease traits as found in the 
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GWAS catalog.  b) Circos plots displaying the distribution of disease-associated trans-eQTL by 

chromosome.  Color legend for GWAS categories is found on the bar graph.  

Figure 5:  Pathway analysis of trans-eSNPs within the coding region of a gene.  For SNPs 

that fell within the coding region of a gene, pathway analysis was run with Enrichr against the 

GO Biological Processes 2021 database for each cell type, a) CD4+CD45RO-, b) 

CD4+CD45RO+, c) CD8+CD45RO-, d) CD8+CD45RO+.  These SNPs were highly associated 

with pathways related to synapse organization and function, axon guidance, and 

neurodevelopment. 
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