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Abstract: Use of functional magnetic resonance imaging (fMRI) in studies of aging is often hampered
by uncertainty about age-related differences in the amplitude and timing of the blood oxygenation lev-
el dependent (BOLD) response (i.e., hemodynamic impulse response function (HRF)). Such uncertainty
introduces a significant challenge in the interpretation of the fMRI results. Even though this issue has
been extensively investigated in the field of neuroimaging, there is currently no consensus about the
existence and potential sources of age-related hemodynamic alterations. Using an event-related fMRI
experiment with two robust and well-studied stimuli (visual and auditory), we detected a significant
age-related difference in the amplitude of response to auditory stimulus. Accounting for brain atrophy
by circumventing spatial normalization and processing the data in subjects’ native space eliminated
these observed differences. In addition, we simulated fMRI data using age differences in brain mor-
phology while controlling HRF shape. Analyzing these simulated fMRI data using standard image
processing resulted in differences in HRF amplitude, which were eliminated when the data were ana-
lyzed in subjects” native space. Our results indicate that age-related atrophy introduces inaccuracy in
co-registration to standard space, which subsequently appears as attenuation in BOLD response ampli-
tude. Our finding could explain some of the existing contradictory reports regarding age-related differ-
ences in the fMRI BOLD responses. Hum Brain Mapp 00:000-000, 2017.  © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a pop-
ular noninvasive tool for in vivo imaging of brain function
through the blood oxygenation level dependent (BOLD)
signal. Controlling for refractory and adaptation effects via
effective experimental design, there is evidence for rough
linearity in the BOLD response to neuronal stimulation
[Huettel et al., 2004]. General linear models (GLM) of
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fMRI data evolved from this linearity assumption, and
became the most widely used models for analyzing fMRI
data. The most basic element of a GLM is the hemody-
namic impulse response function (HRF), which is defined
as the BOLD response to an extremely brief stimulus.
Under the assumption of linearity, one can predict the
BOLD response to any combination of stimuli with vary-
ing amplitude, duration, or delay. Importantly, most stan-
dard GLM analyses also assume that the shape of the HRF
is the same across brain regions and subjects, utilizing a
“canonical” double-gamma function. However, the actual
shape of the HRF arises through a complex interaction of
multiple physiological processes including blood flow,
blood volume, and cerebral metabolic rate of oxygen [Bux-
ton et al., 1998; Donahue et al., 2009]. The involvement of
multiple physiological processes in shaping the final HRF
curve warrants the possibility of its inter-regional and
intersubject variability [Buckner et al., 2000]. However, the
majority of fMRI analyses are currently performed under
the assumption of HRF invariance. Results of any group
comparison without this assumption can be challenging to
interpret, as it makes it impossible to distinguish whether
or not the observed differences in activation are due to
underlying neuronal activity or differences in the ampli-
tude and timing of the HRF that can result from other
physiological variations.

There is evidence that the human cerebrovascular sys-
tem goes through multiple age-related changes and deteri-
oration including but not limited to increased tortuosity,
atherosclerosis, and reduced reactivity [Desjardins, 2015;
D’Esposito et al., 2003]. These changes pose problems for
fMRI as well as other hemodynamic methods such as
near-infrared spectroscopy [Bonnéry et al, 2012]. While
these factors represent substantial evidence that the shape
of HRF is subject to change with age [Desjardins, 2015;
D’Esposito et al., 2003; Handwerker et al., 2012], the exist-
ing results in the literature about age-related alterations in
the HRF are often mixed or even contradictory. For
instance, age-related reductions in the amplitude of the
HREF to visual stimuli have been reported in many studies
[Ances et al., 2009; Handwerker et al., 2007; Raemaekers
et al., 2006; Ross et al., 1997; Tekes et al., 2005]. Reductions
have also been reported for motor stimuli [Buckner et al.,
2000; Handwerker et al., 2007; Hesselmann et al., 2001;
Raemaekers et al., 2006; Riecker et al., 2003]. In contrast,
some studies report increases in the amplitude of the HRF
[Mattay et al., 2002; Mohtasib et al., 2012, Restom et al.,
2007], while others have found no age-related differences
[Aizenstein et al., 2004; D’Esposito et al., 2003, 1999; Huet-
tel et al.,, 2001; Stefanova et al., 2013; Yan et al., 2011].
There are also reports claiming that age-related differences
are most pronounced in the variance of the HRF ampli-
tude rather than the mean [Ances et al., 2009; D’Esposito
et al., 2003]. In addition to the amplitude of the HRF, its
temporal properties have also been investigated. For
instance, Huettel et al. [2001] detected a faster baseline to
peak in the HRF of older subjects and another study

demonstrated systematic increases in the duration of the
postpeak return to baseline [Richter and Richter, 2003].

Cortical regions involved in different tasks are com-
posed of distinct types of neurons and probably different
vasculature structure [Brodmann, 2007; von Economo
et al., 2008]. Therefore, it seems logical to assume that dif-
ferent brain regions exhibit distinct age-related alterations
in HRF shape. In the investigation of regional variability
in age-related alterations of the HRF, one study suggested
that age is associated with decreases in the amplitude of
the HRF in visual cortex but not in motor cortex [Ross
et al., 1997], whereas another study suggested the opposite
[Morsheddost et al., 2015].

Even though it is challenging to draw conclusions from
across these studies, it seems that most studies processing
their fMRI data by transforming them to standard space
show some significant age-related difference in the ampli-
tude of the HRF [Buckner et al., 2000; Hu et al., 2013; Mat-
tay et al., 2002; Mohtasib et al., 2012; Raemaekers et al.,
2006; Riecker et al., 2003; Zysset et al., 2007], whereas most
studies processing their fMRI data in subjects’ native space
show no significant difference [Aizenstein et al., 2004;
D’Esposito et al.,, 1999; Huettel et al., 2001; Restom et al.,
2007; Yan et al., 2011]. There are also reports that transfor-
mation into standard space significantly affects the results
of structural and functional analyses [Hutchison et al.,
2014; Krishnan et al., 2006; Razlighi et al., 2014]. In addi-
tion, there is a strong regional dependency in age-related
brain atrophy measured by cortical thickness, wherein the
primary visual cortex exhibits minimal or no age-related
cortical thinning and the primary motor and auditory cor-
tices show high levels of age-related atrophy [Fjell et al.,
2009; Salat et al., 2004]. This evidence raises the possibility
that differential age-related morphological changes in
brain structure (brain atrophy) might be responsible for
some of the observed age-related alterations of the BOLD
response reported in the literature, and that this relation-
ship may be mediated by the misregistration of the older
participants” functional data to a standard anatomical
template.

In this study, we used a jittered event-related fMRI
experiment with two robust and well-studied sensory
stimuli (visual and auditory) to investigate the effect of
brain atrophy in the observed age-related alterations in the
amplitude and timing of HRF. We hypothesized that
extensive brain atrophy introduces inaccuracy in the co-
registration of the older participants’ brain to standard
space and that this inaccuracy subsequently manifests as
attenuation of the amplitude of the HRF. We aimed to
investigate this hypothesis using both real and simulated
fMRI data from stimuli specifically selected to evoke acti-
vation in primary visual and auditory cortices. These two
sensory cortices are well suited for this study, as little or
no age-related atrophy has been demonstrated in the visu-
al cortex, whereas the auditory cortex is among the regions
that show the most age-related atrophy. Furthermore, we
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investigated whether or not slice-timing differences could
influence the observed delay in the BOLD response
reported in some of the literature and also found in our
experiments.

METHODS
Participants and Data Acquisition

Thirty-six right-handed healthy subjects (18/18 youn-
ger/older; percentage female: 0.56/0.61, age mean + std:
26.1/64.9 +2.8/2.2 years) were presented with visual (6
Hz flashing checker boards) and auditory (6 Hz alternat-
ing tones with 600 and 1000 Hz frequency) stimuli in a jit-
tered event-related design while undergoing functional
magnetic resonance imaging. The event duration was sam-
pled from a uniform distribution (range: 0.4/0.6-4.0/4.0 s
for visual/auditory) and the onset of the stimuli were jit-
tered by applying a uniformly distributed interstimulus
interval (range: 2.5 ~ 9.0 s). To ensure attention to the
stimuli, subjects were asked to respond with a button
press at the conclusion of each visual stimulus.

Functional and structural images were acquired using
the same 3.0 T Philips Achieva magnetic resonance scan-
ner. A Tl-weighted magnetization-prepared rapid
gradient-echo sequence [TE/TR =3/6.5 ms, flip angle =8°,
256 X 256 matrix size, in-plane resolution=1 X 1 mm,
and 180 slices in axial plane with slice-thickness/gap =1/
0 mm] was used to acquire structural images for the locali-
zation of fMRI data. Functional images were acquired
with a fast field echo echo-planar imaging (FFE-EPI)
sequence [TE/TR = 20/2000 ms, flip angle =72°, 112 X 112
matrix size, in-plane resolution=2 X 2 mm, slice
thickness =3.0 mm (no gap), 41 axial slices per volume,
6:1 Philips interleaved, in ascending order]. Participants
were scanned for 5.5 min, with at least 37 events each of
visual and auditory stimuli. All images were reviewed by
a radiologist, and any participant with vascular or neuro-
logical pathology was excluded from the study. Two par-
ticipants were excluded by this process.

Preprocessing

Structural images were reconstructed using Freesurfer (v
5.1.0) and visually inspected for any inaccuracy in the corti-
cal parcellation and subcortical segmentation according to
the provided guidelines (http://surfernmr.mgh.harvard.
edu/fswiki/Edits). The gray matter thickness of the cere-
bral cortex was obtained at each vertex on the white matter
surface by computing its shortest distance from the pia
mater surface. The cortical thickness of each parcellated
region was obtained by averaging the vertices within that
region. Functional images were preprocessed using FMRIB
software library (FSL). FMRI volumes were aligned using
rigid body registration to the first volume to correct for sub-
ject head motion, slice-time corrected using Sinc

interpolation, and smoothed using a 5 mm® nonlinear ker-
nel. Intensity normalization was carried out such that the
50" percentile of all volume intensities after removing the
background noise was 10* for every subject. The time-series
were then high-pass filtered using a Gaussian filter with
cutoff frequency of 0.008 Hz. Spatial normalization was per-
formed by initial rigid-body registration of the subject’s
functional mean image to the structural image of the same
subject and subsequent linear (affine) registration of the
structural image to MNI152 standard space. We also per-
formed nonlinear registration between structural images
and the MNI152 template to test the effects of different reg-
istration methods. Both registrations were performed with
default parameters of the FSL (v 5.0.7) software package.

Statistical Analysis of fMRI Data

We used multiple regression analysis to obtain the age-
related differences in mean cortical thickness of the prima-
ry visual (lateral-occipital) and primary auditory (trans-
verse-temporal) cortices, controlling for gender and
intracranial volume effects.

The standard two-level GLM technique, also imple-
mented in FSL, was used for the statistical analysis of the
preprocessed fMRI data. The first level linear model fits
individual voxel time-series to multiple regressors of inter-
est (visual, auditory, and motor response stimuli, con-
volved with the canonical double-gamma HRF) and
nuisance regressors (6 sets of motion parameters). The
first-level activation maps were extracted for every subject
after prewhitening using an autocorrelation matrix given
by a first-order autoregressive (AR(1)) model of residuals
from a preliminary GLM.

The second-level linear analysis was performed on the
obtained activation maps for all participants and each age
group separately to compute a contrast map for between-
group differences in activation. Obtained maps were cor-
rected for multiple comparisons using cluster analysis (Z
threshold = 2.3/5.0 for real/simulated data, with the clus-
terwise P < 0.01). Binarizing the group-level activation maps
gives the region of interest masks used to extract the fMRI
time-series in standard space for deconvolving the HRF.
These masks were visually inspected to ensure their loca-
tions matched the primary visual and auditory cortices in
standard space. Because this procedure is biased to select
voxels with HRF shapes similar to the canonical double
gamma, we also repeated the computation of these ROI
masks using two separate approaches: (1) with a Gaussian
HRF and (2) without any a priori assumption on the shape
of the HRF using independent component analysis (ICA).

Time-Series From Subject’s Native Space

To analyze fMRI data in subjects’ native space, the first-
level statistical analyses were repeated for fMRI data with-
out spatial normalization to standard template space. To
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obtain the regional activation masks in the subjects’ native
space localized to the primary visual and auditory cortices,
the subject-wise Freesurfer extracted ROI masks were used
(superior-temporal and transverse gyri for auditory cortex
and lateral occipital, fusiform gyrus, pericalcarine, and
inferior parietal for visual cortex). Only significantly acti-
vated (P<0.01 uncorrected) voxels within the primary
visual and auditory cortices were selected to extract the
time-series for the native space analysis. Using manually
drawn ROI masks to select the activated voxels within the
primary visual and auditory cortices is often used in the
literature analyzing their fMRI data in subjects’ native
space [Ances et al., 2009; D’Esposito et al., 1999; Huettel
et al., 2001; Mehagnoul-Schipper et al., 2002; Ross et al.,
1997]. However, we feel that using subject-wise Freesurfer
ROI masks is more consistent and less susceptible to
human error.

HRF Deconvolution

Deconvolution can extract subject- and region-specific
HRFs from a voxel’s time-series given the time-course of
the associated stimulus. Under the assumption of linearity,
the fMRI signal at location i can be formulated as

yi(t)=s(t) = hi(t)+ni(t) 1)

where s(t) is the binary sequence that represents the time-
course of the stimuli of interest, i;(t) is the HRF, n;(t) is
the residual time course, and y;(t) is the preprocessed
fMRI signal after regressing out the six standard motion
parameters as nuisance variables. Deconvolution, in gener-
al, is an ill-posed problem that can have multiple solu-
tions. There are different deconvolution techniques that
have been utilized in fMRI data [Glover, 1999; Goutte
et al., 2000; Josephs et al., 1997; Woolrich et al., 2004] and
each of them is based on an underlying assumption. For
instance, given a fixed shape of the HRF (e.g., double gam-
ma) with amplitude being the only varying parameter, Eq.
(1) can be reformatted as a simple regression model;
hi(t)=B;(s(t)Xh(t))+n;(t). In this case, the solution for B, is
estimated by ordinary least squares (OLS) under the
assumption of independent noise, or generalized least
squares assuming autocorrelated errors, as in the subject-
level GLM described above. This is the simplest solution
for Eq. (1), and is thus commonly used in the fMRI data
analysis. However, it assumes a rigid shape for the HRF
across regions or subjects and would be biased in cases
where there is systematic deviation from this assumed
shape, making interpretation of the obtained age-related
differences in the BOLD response problematic.

For the sake of our experiment, in this study, we chose
a highly constrained model, FMRIB'’s linear optimal basis
sets (FLOBS) introduced in Woolrich et al. [2004], and a
moderately relaxed model, finite impulse response (FIR) fil-
tering introduced in Goutte et al. [2000] and Josephs et al.
[1997], to make sure that our results are not confounded by

specific deconvolution methods. These two techniques
have been commonly used in the literature to extract the
HREF for visual, auditory, and motor cortex. We used these
techniques to estimate the HRF in young and old subjects
using both native space and standard space extracted time-
series.

FMRIB’s Linear Optimal Basis Sets

FLOBS are basis sets derived such that their linear com-
binations explain a large proportion of the variance for the
most physiologically plausible shapes of the HRF [Wool-
rich et al., 2004]. FLOBS were introduced to relax the HRF
rigidity assumption in GLM analysis. They allow differ-
ences in delay and amplitude for four parts of the HRF
curve. In general, they can be formulated as

yi(t)=s(t)x (Z mm) +mi(t) @)
b

where h,(t) are the different basis functions generated to
fit a range of the most physiologically plausible HRFs. Six
standard motion nuisance regressors were also included in
the analysis. FLOBS weightings, 8, can also be estimated
by OLS which is an advantage for this method. Once B,
are estimated, they can be used to construct the final
shape of the HRF for each subject and brain region [Grin-
band et al., 2008].

Finite Impulse Response Filtering

Using an FIR filter does not impose any particular con-
straint to the shape of the HRF, instead it assumes that the
HREF is a special case of an autoregressive model with an
exogenous input [Goutte et al., 2000]. It is thus more flexi-
ble but has a higher chance of producing a physiologically
meaningless shape. Equation (1) can be simply reformu-
lated as an FIR filter:

y,-(t)=z wrs(t—T)+n;(t) 3)
T

It is clear that wr=h;(T),¥0 < T <d can be considered as
the weighting of an FIR filter which is applied to s(t). In
this case, d is the order of the filter, which is determined
by the length of the HRF and the repetition time (TR) of
the EPI sequence. To estimate FIR filter weightings, wr,
Eq. (3) can be reformulated as a product of a vector of
weighting factors W=(wy,w,,ws,...,ws)T and a Toeplitz
matrix X=(Sd+1,8d+2,Sd+3,...,Sy), where S,=(s(a—1),
s(a=2),5(a—3),...,S(a—d))". Thus,

Y, =wls;+n; 4)

where both y, and n; follow a similar notation as s,.
Under this matrix formulation and normally distributed
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noise, maximum likelihood estimation of the weighting
factors is obtained as

w=(X"X) X"y ®)

where y=(y(d),s(d+1),5(d+2),...,s(N))" and N is the total
number of sample points in the fMRI signal [Goutte et al.,
2000]. Six standard motion nuisance regressors were also
included in the analysis. Once the FIR filter weightings,
wr, are computed, the shape of the HRF is given using
those weighting factors.

Simulated fMRI Data

Real fMRI data are problematic for evaluating the quali-
ty of one method over another because the true underlying
BOLD signal is not known. Because of this, simulated data
were used so that processed images could be compared to
a known underlying BOLD signal. The morphology of our
simulated fMRI scans comes from a real subject’s data by
temporally averaging all volumes. Reconstructing the
same subject’s structural image with FreeSurfer [Fischl
et al., 2002, 2004a] and intermodal rigid-body registration
with FSL [Greve and Fischl, 2009] gives us the ROI masks
in the fMRI space. We used the lateral occipital region as
primary visual cortex and the third quarter of superior
temporal plus transverse temporal gyri in the anterior to
posterior direction as primary auditory cortex. Then neu-
ronal activity stimuli consisting of sequences of 20 boxcar
pulses with jittered onsets (at least 10 s apart) and
randomly generated durations (uniformly distributed with
a range of 0.5-3.5 s) were created for each ROI The
neuronal stimulus for each voxel was convolved with the
canonical HRF (e.g., double gamma) to generate the hemo-
dynamic response. Identical HRFs were used for both age
groups, ensuring no age-related alteration in the neurovas-
cular structure. In this case, any age-related difference
obtained from the simulated data must be caused by data
processing. Both HRF and neuronal stimuli were sampled at
20 Hz to simulate interleaved slice acquisition timing for a
given TR and number of slices. Null data (random noise)
were assigned to voxels outside ROIs. To simulate cardiac
and respiratory variations in the fMRI signal, a single sinu-
soid at f. = 1.23 Hz for cardiac and another sinusoid at
fr = 0.25 Hz for respiratory noise have been added to the
data. The amplitude of the cardiac signal is modulated with
the inverse of the distance of the voxel from the nearest
artery. Additionally, 5% Gaussian thermal noise was added
to the signal. The temporally averaged volume of the real
data was also used to obtain the mean value at each voxel,
which was used to shift the mean of the hemodynamic sig-
nal and to scale the standard deviation of the signal to 1% of
the mean value, comparable to a robust signal in the visual
cortex.

We simultaneously simulated motion, interleaved slice
acquisition, and their interaction. Motion parameters were
extracted from real subjects. We then upsampled these

motion parameters (6 parameters) using spline interpola-
tion to the same sampling frequency as the simulated
BOLD signals (20 Hz). By applying the upsampled param-
eters to the volume at the initial point, we can specify the
exact position of the volume at any fractional time (20X
TR) between the two original sampling points to realisti-
cally simulate the interaction between slice-timing and
motion. More detail on the fMRI simulator used in this
project can be found in Parker et al. [2017].

Slice Acquisition Timing and HRF Delay

Because some studies have reported differences in HRF
delay rather than amplitude across different age groups, we
also explored the effects of data processing on HRF timing.
In addition to the effects of spatial normalization on HRF
delay, we also specifically examined the effects of slice
acquisition timing. In fMRI data acquired with interleaved
slice acquisition, adjacent slices are acquired with delay up
to half of the repetition time (TR=2 s). If the slices are
acquired in transverse plane, as is usually done, then one
can expect the primary visual cortex to be spatially extended
into multiple slices, whereas the primary auditory cortex
often extends to fewer slices, as the transverse gyri do not
spatially extend through coronal or sagittal planes. There-
fore, any systematic age-related differences in brain mor-
phology could potentially generate differences in the timing
of the extracted HRF. While there are reports suggesting
that slice-timing correction should be included in the fMRI
preprocessing pipeline [Parker et al.,, 2017; Sladky et al.,
2011], the exact timings of the slice acquisition are often
missing from image headers [Biswal et al., 2010] and may be
difficult to recover retrospectively [Parker et al., 2014]. In
addition, many researchers prefer to eliminate the subopti-
mal slice-timing correction step and instead include slice-
dependent predictors in their GLM design to account for
this delay. To investigate whether or not such timing differ-
ences in the acquisition of the adjacent slices can induce
delay in the extracted HRF. We extracted the HRF from dif-
ferent slices in each subject’s primary auditory cortex and
tested whether or not the delay in slice acquisition relates to
the timing of the extracted HRFs. We further examined
whether any induced delay could be removed with the
proper application of slice-timing correction.

RESULTS

Brain Atrophy in Primary Visual and
Auditory Cortices

Our results revealed a significant age-related decrease in
the mean cortical thickness of the primary auditory cortex
(transverse-temporal) (¢t = —2.5, P <0.01), whereas prima-
ry visual cortex (lateral occipital) did not present any sig-
nificant age-related alteration (t = —1.64, P =0.11).
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Figure I.
Brain activation induced by visual (top row) and auditory (bottom row) stimuli illustrated by
color-coded z-statistics overlaid on the MNI template for (a) all subject combined, (b) only
young subjects, (c) only old subjects, and (d) the contrast between young and old subjects. [Col-

or figure can be viewed at wileyonlinelibrary.com]

Group Level Activation Maps

The two sensory stimuli (visual and auditory) induced sig-
nificant activation in the primary visual and primary auditory
cortices. Figure 1a shows the group level activation area with
significant z-statistics for visual and auditory stimuli of all
subjects in the standard space. Figure 1b,c shows the same
statistical activation maps for younger and older groups sepa-
rately, and Figure 1d illustrates significant activation differ-
ences for primary visual and auditory cortices. There were no
significant differences between the activation maps of the
younger and older group for visual stimuli that would sur-
vive clusterwise multiple comparison correction, whereas sig-
nificant differences were present within the auditory cortex
in response to auditory stimuli. The age-related differences in
the activation maps of the primary auditory cortex can be
interpreted as differences in neural activity if we assume
older and younger participants have identical HRFs. Howev-
er, if age-related changes in other physiological processes
result in HRF differences, interpretation of these results
becomes challenging.

Age-Related Differences in HRF Amplitude and
Timing
To investigate the age-related differences in HRF ampli-
tude, we used both FLOBS and FIR to extract the HRF

from both age groups. Figure 2a illustrates the differences
between the extracted HRF from younger and older

groups. Compared to the younger group, there was a sig-
nificant reduction in the amplitude of the auditory HRF in
older participants (A=0.36, P<0.05), and a marginal
increase in amplitude of the visual HRF (A =0.29,
P =0.08). Figure 2a also shows a nonsignificant delay in
the BOLD response (from peak to baseline) for both visual
(At=21 s, P=0.93) and auditory (At=0.90 s, P=0.26)
stimuli using FLOBS. These delays in BOLD responses to
both stimuli are eliminated or reduced when the FIR tech-
nique is used to extract the HRF. While not passing the
threshold for statistical significance, any differences in the
return to baseline could pose problems for interpreting
activation differences between groups using GLM models
that assume HRF invariance.

Figure 2b shows the analogous results using nonlinear
registration for spatial normalization. Nonlinear registration
resulted in a slight attenuation in the magnitude difference
observed in the auditory HRF using linear registration,
which made the difference nonsignificant (A =0.34,
P =0.051). For the visual HRF, the nonlinear registration
increased the HRF amplitude difference, yet remained non-
significant (A = 0.33, P = 0.051). This serves as a preliminary
indication that the obtained difference in age groups may be
at least partially due to the inaccuracy in the registration of
old subjects to standard space, as nonlinear registration has
been shown to be more accurate than registration using
affine transformation [Andersson et al., 2007].

Figure 2c shows the results without spatial normaliza-
tion, using time-series extracted from the subjects’ native
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Figure 2.

Differences between extracted HRFs from young (red curves)
and old (blue curves) subjects using visual and auditory stimula-
tion in real fMRI data. For comparison, two separate deconvolu-
tion techniques—FLOBS (top row) and FIR (bottom row)—are
used for HRF extraction. Three different fMRI spatial prepro-
cessing pipelines were used: (a) standard space with linear

space. The observed age-related differences in the ampli-
tude of the extracted HRF were virtually eliminated by cir-
cumventing the spatial normalization step, suggesting that
these differences may be the byproduct of misregistration
of older participants to standard space. Supporting Infor-
mation, Figure S1 shows the comparative results obtained
using a Gaussian HRF suggesting a minimal effect of HRF
shape selection in the first-level analysis in our final
results.

Using the native space time-series did not eliminate the
observed nonsignificant delay of HRF for auditory stimuli
in the standard space. In fact, it slightly increased this delay
to the point of significance (At =1.65 s, P <0.05). FIR analy-
sis on the native space time-series also resulted in a large
but nonsignificant delay (At =5.65 s, P =0.26) in the return
to baseline. Because it was relatively unaffected by registra-
tion, this delay can be interpreted as an underlying neuro-
vascular process shaping the HRF curve obtained from the
auditory cortex, as has been reported elsewhere [Taoka
et al., 1998]. Next, we used simulated fMRI data to provide
evidence that age-related differences in the brain morpholo-
gy could generate an age-related difference in the HRF
amplitude extracted from spatially normalized fMRI data.

HRF Amplitude and Timing Differences in
Simulated Data

The above results indicate that age-related differences in
the BOLD response can be accounted for by analyzing the
fMRI data in subject’s native space. To further test our

(affine) registration, (b) standard space with nonlinear (warped)
registration, and (c) native space analysis without registration.
The significant difference in the magnitude is marked with * and
in the delay (from peak to baseline) is marked by © (P < 0.05,
outliers excluded). [Color figure can be viewed at wileyonlineli-
brary.com]

hypothesis that differences in age-related brain atrophy
could lead to HRF differences through the co-registration
step in spatial normalization, we used simulated fMRI
data. Though identical HRFs were used to generate the
underlying BOLD signal for both young and old subjects
in the simulated data, Figure 3a shows that the previously
observed age differences in the amplitude and delay of the
HRF were present for both visual (FLOBS: A=0.12,
P=0.12; FIR: At=1.95 s, p=0.80) and auditory (FLOBS:
A=0.18, P<0.05; FIR: At=1.75 s, P=0.37) stimuli using
each deconvolution technique. Furthermore, Figure 3b
illustrates that the difference between the magnitude of
the young and old HRF was reduced by performing non-
linear registration (visual: A=0.01, P =045 audio:
A=0.12, P=0.10). Finally, the native space analysis (Fig,
3c) virtually eliminated the observed differences in the
amplitude (visual: A=0.02, P=040; audio: A=0.00,
P =0.49) and the delay (visual: At =0.00 s, P =0.53, audio:
At=0.05s, P=0.79) of the HRF. Supporting Information,
Figure S2 shows the comparative results obtained using a
Gaussian HRF as a convolution kernel for our regressor in
the first-level analysis of the simulated fMRI data. It is
noteworthy to mention that the BOLD response in the sim-
ulated data was generated with a double-gamma HRF.
The similarity of the results in Figure 3 and Supporting
Information, Figure S1 suggest a minimal effect of HRF
shape selection on our final results.

The results of the simulated fMRI data indicated that
age-related brain atrophy can introduce marginal delay in
the extracted HRF (visual: At=1.95 s, P=0.80, audio:
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Figure 3.

Recapitulating the results in Figure 2 with simulated data.
Extracted HRFs from young (red curves) and old (blue curves)
subjects using visual and auditory stimulation in real fMRI data.
For comparison, two separate deconvolution techniques—
FLOBS (top row) and FIR (bottom row)—are used for extract-
ing the HRF. Three different fMRI spatial preprocessing pipelines

At=175 s, P=037) using standard space time-series;
however, this is only observed with the FLOBS deconvolu-
tion technique (Fig. 3a). The observed delay in simulated
data was completely removed by extracting the HRF from
subject’s native space time-series (visual: At=0.00 s,
P=0.53, audio: At=0.05 s, P=0.79). These findings may
be used as evidence that any atrophy-related difference
observed in the amplitude and timing of the HRF
extracted from standard space time-series will be eliminat-
ed by using the native space time-series. Next, due to the
previously mentioned differences in slice acquisition tim-
ing between visual and auditory cortices, we sought to
investigate whether or not the slice acquisition timing
could cause the observed delay of the HRF extracted from
native space time-series in real data.

HRF Delay Due to Slice Acquisition Timing

Figure 4a,b shows the HRF extracted from significant
voxels in two adjacent slices within the auditory cortex of
a typical subject, with and without slice-timing correction.
As shown in Figure 4a, the extracted HRFs from the
uncorrected slices exhibit a delay equal to the delay in
their slice acquisition time. Figure 4b shows that the
obtained delay in the extracted slicewise HRF was
completely eliminated when slice-timing correction is
properly applied in the preprocessing pipeline. Figure 4c,d
plots the time to peak of every subjects’ auditory HRF
from each of the same two slices with and without slice
timing correction. Slice-timing correction eliminated any

were used: (a) standard space with linear (affine) registration,
(b) standard space with nonlinear (warped) registration, and (c)
native space analysis without registration. The significant differ-
ence in the magnitude is marked with *. None of the observed
difference in the delay (from peak to baseline) was significant.
[Color figure can be viewed at wileyonlinelibrary.com]

slice-dependent differences in the extracted HRF delay,
suggesting that the observed significant age-related delay
in the HFR from native space time-series of the real fMRI
data (At=1.65 s, P <0.05 Figure 2c), cannot be explained
by the slice acquisition delay if proper slice timing was
applied.

DISCUSSION

Using standard fMRI processing in a small number of
participants, we detected significant age-related differences
in the BOLD response to auditory stimuli, with older sub-
jects” BOLD response being significantly weaker than
younger subjects. The simplest interpretation of this find-
ing is that the older subjects present weaker neuronal
activity than younger subjects in response to the same
auditory stimulus. While we cannot completely rule out
this possibility, many researchers have argued that for a
brief sensory stimulus with no high-level information
processing, the observed differences might be due to age-
related changes in the neurovascular structure. Numerous
pieces of evidence for age-related changes in the neurovas-
cular structure support this hypothesis [Abernethy et al.,
1993; D’Esposito et al.,, 2003; Farkas and Luiten, 2001;
Kalaria, 1996, Knox et al., 1980; Masawa et al., 1994, Moo-
dy et al., 1997; S et al.,, 1979; Sonntag et al., 1997]. A direct
consequence of this hypothesis is that if the age-related
neurovascular changes in the brain cause alterations in the
BOLD response and HRF amplitude and timing, then the
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Demonstrating slice-dependent delay in the extracted HRF from
two adjacent slice (slices 17 and 18) in the significantly activated
brain area due to auditory stimulus of a typical subject’s (top
row) unsmoothed data (a) with and (b) without proper slice
timing correction. Without slice timing correction, FLOBS accu-
rately captures the same amount of delay in the extracted HRF
that are imposed during their acquisition. Bottom row illustrates

interpretation of the fMRI results in studies of aging are
challenging. This is because it is hard to distinguish
whether any age-related findings in higher level associa-
tion cortices are due to changes in the neuronal activity or
due to changes in the HRF caused by underlying neuro-
vascular structures.

In this study, we illustrated that age-related changes in
the neuroanatomical structure of the brain (atrophy) repre-
sents a confounding factor that can manifest as attenuation
in the BOLD response. We showed that the significant
age-related differences in the amplitude of the HRF
extracted from subjects’” primary auditory cortex could be
eliminated by analyzing the data in subjects’ native space.
Our analysis of simulated fMRI data confirmed these find-
ings and further demonstrated that differential brain atro-
phy alone can cause attenuation in the amplitude of the
HRF extracted from older participants. By processing the
simulated fMRI data in native space, which used identical
HRFs to generate the underlying BOLD signal for both
young and old participants, we eliminated the observed
attenuation.

The fact that no significant age-related differences were
observed in the amplitude of the HRF extracted from

a linear regression of slice-dependent HRF time to peak vs the
acquisition delay of that slice with and without STC for 35 sub-
jects. Without STC, there is a one-to-one (slope is equal to
one, B —0.96%) relationship between the slice-dependent
HRF time to peak and the slice acquisition delay. With STC, this
relationship is completely removed. [Color figure can be viewed
at wileyonlinelibrary.com]

primary visual cortex is in agreement with age-related
brain atrophy literature showing that the lateral occipital
region (visual cortex) remains intact with age, whereas the
superior temporal and temporal transverse gyri (auditory
cortex) have the maximum level of age-related cortical
thickness loss [Fischl et al., 2004b; Fjell et al., 2009]. Our
results suggest that greater atrophy in auditory cortex
introduces more inaccuracy in their registration to stan-
dard template space. The excessive misregistration in older
participants causes more time-series to be extracted from
voxels outside the primary auditory cortex that do not pre-
sent any level of BOLD activation. In more severe misreg-
istration cases, parts of the primary auditory cortex that
do in fact exhibit strong BOLD activation can also fall out-
side of the group-level ROI mask. We have already dem-
onstrated both these effects in a previous publication
[Razlighi et al.,, 2014]. Incorporation of the signals from
areas outside the activated regions and partially neglecting
signals from activated areas could attenuate the mean
BOLD signal, which would manifest as a decrease in the
amplitude of the extracted HRF. Another possibility is that
excessive brain deformation in older participants enforces
much stronger warping to transfer their morphology to
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the standard space. Such differential warping may result
in differential partial voluming effects that can be the
cause of the observed attenuation. However, the latter
mechanism assumes that registration has optimally trans-
formed the older participants’ brains to standard space.
We have shown in recent work that the correspondence of
the cortical regions after spatial normalization is 38%/55%
using affine/nonlinear registration [Razlighi, 2016]. There-
fore, we think that the actual misregistration rather than
the partial voluming during the transformation is the pri-
mary cause of the effect detected in our data.

Our finding that brain atrophy induces differences in
the amplitude of the HRF between the two age groups
could explain some of the divergent findings between
studies using co-registration to standard space, which tend
to show significant age-related amplitude differences in
sensory cortices [Buckner et al., 2000; Hu et al., 2013; Mat-
tay et al., 2002; Mohtasib et al., 2012; Raemaekers et al.,
2006; Riecker et al., 2003; Zysset et al., 2007], and research
using native space analysis, which tend to show no signifi-
cant differences [Aizenstein et al., 2004; D’Esposito et al.,
1999; Huettel et al., 2001; Restom et al., 2007; Yan et al.,
2011]. However, it should be noted that not all existing
studies can be explained by this categorization [Ances
et al.,, 2009; Handwerker et al., 2007, Hesselmann et al.,
2001; Hutchison et al., 2012; Ross et al., 1997; Stefanova
et al., 2013; Tekes et al., 2005].

Owing to the limited number of participants in our
study, we cannot currently rule out the possibility that
age-related changes in the neurovascular structure either
attenuate or magnify the BOLD response. However, it is
likely that the effect of age-related changes in neuroana-
tomical structure has a stronger effect than age-related
changes in neurovascular structure, as we were able not
only to detect an age difference but also to eliminate it
with a native space approach even with a small number of
participants. However, these effects should be examined in
larger samples to rule out the possibility of small vascular
effects on the HRF. Therefore, we refrain from making any
conclusions about actual age-related differences in the
shape of the HRF. Our goal is to show the effect of brain
atrophy as confounding factor for studies investigating
age-related changes in the amplitude of the HRF.

We used two different deconvolution techniques to
extract the HRF from fMRI data, selected from the most
restricted (FLOBS) and the most relaxed (FIR) methods to
examine whether or not the method of deconvolution
would have any effect on the observed atrophy-related
changes on HRF amplitude and timing. As seen in Figures
2 and 3, both FLOBS and FIR techniques produced compa-
rable results for the amplitude of the extracted HRF (with
one exception in Fig. 2b). However, the timing of the
extracted HRF is somewhat different between the two
techniques. The main difference is in the temporal resolu-
tion of the extracted HRF: while the FIR filter samples the
HRF curve with the same sampling rate as the fMRI data,

FLOBS can produce results with much higher temporal
resolution. While some researchers may consider this to be
very beneficial when the timing of the HRF is being inves-
tigated, others might raise the possibility that the observed
delay is not real but rather enforced by the prior shape
constraints applied onto the basis functions in FLOBS. For
instance, Figure 2a,b illustrates that using FLOBS detects a
rather large but not significant delay in the return to base-
line of the BOLD response for older participants. Howev-
er, all the detected delays in Figure 2a,b were suppressed
to smaller or negligible levels using the FIR technique. On
the other hand, with such a low temporal resolution
(TR=2 s), the FIR technique also generates some results
that do not seem physiologically plausible. For instance,
the extremely large, but not significant, delay detected in
the older subjects’” BOLD response to auditory stimuli in
native space (Fig. 2c) seems unlikely, and could be a direct
result of the coarse sampling of the fMRI data. Using sim-
ulated fMRI data, we have demonstrated the same level of
inconsistency in the timing of the extracted HRF (Fig.
3a,b). However, all the observed (nonsignificant) differ-
ences in the timing of the HRF were eliminated by proc-
essing the simulated fMRI data in subjects’ native space
(Fig. 3c). This suggests that processing data in subjects’
native space can eliminate any atrophy-related delay in
HRF timing. Given these simulated results, it is possible
that the significant delay detected in the HRF obtained
from real data in subjects’ native space (Fig. 2c) is not due
to the age-related brain atrophy, but is caused by age-
related changes in the neurovascular system. Similar find-
ings have been reported earlier [Taoka et al., 1998]. While
we cannot rule out such a possibility at this time, we
should emphasize again that with the moderate sampling
rate used in our fMRI acquisition (TR =2 s), it is not possi-
ble for us to investigate whether or not the observed delay
is real or an artifact of the deconvolution techniques. In
the future, fMRI data with higher sampling rate could be
used for such an investigation.

Finally, we investigated whether or not the slice-
dependent delay during fMRI data acquisition could
account for the observed significant age-related delay of
the HRF extracted from subject’s native space auditory
cortex. Our results suggest that the delay in the acquisition
of each slice is reflected in the extracted HRF from that
slice, if slice-timing correction has not been applied. How-
ever, the appropriate application of slice-timing correction
removed the slice-dependent delay. This finding highlights
the fact that neglecting slice-timing correction from the
preprocessing pipeline, or applying it incorrectly, has the
potential to introduce delay in the HRF extracted from dif-
ferent groups. Therefore, a proper slice-timing correction
should be considered an essential preprocessing step
when investigating any alterations in the timing of the
HRF. Among the studies investigating age-related differ-
ences in the HRF, only a few specifically indicated an
application of slice-timing correction during preprocessing
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[D’Esposito et al., 1999; Hu et al., 2013; Huettel et al., 2001;
Riecker et al., 2003; Zysset et al., 2007]. In addition, our
results indicate that if slice-timing correction has been
substituted by slice-dependent predictors in the first-level
GLM analysis, then the HRF extracted from each slice still
needs to be corrected for slice acquisition delay.

The process of obtaining group-level ROI masks when
the double-gamma HRF is used in the first-level analysis
may present a potential bias toward selecting voxels with
the same HRF shape. To address this issue, we recom-
puted the group-level ROI mask with two different meth-
ods; first using a Gaussian HRF and then using ICA,
which does not require any prior knowledge about the
HRF shape. Repeating the first-level and second-level anal-
yses with a Gaussian kernel as the new HRF gave a near-
perfectly overlapping ROI mask (Dice =95%), which gen-
erated similar results for both real and simulated data (see
Supporting Information, Figs. S1 and S2). Furthermore, we
used group ICA (temporal concatenation) to extract the
activated areas for both visual and auditory stimulation.
ICA is a multivariate technique that does not require any
prior assumption about the shape of the HREF, therefore
eliminating any bias toward the selected shape in GLM
analysis. The ICA-generated ROI mask was larger than the
one generated by Gaussian or double-gamma HRFs yet it
contained 100% of both ROI masks. Therefore, repeating
the standard space analysis using the ICA-derived ROI
mask should generate similar results. Both these experi-
ments provide evidence that while the selected ROI could
generate bias toward the double-gamma canonical HRF,
our conclusions are not affected by such a bias.

Any de/convolution method is based on an underlying
assumption of linearity. Therefore, our experiments in this
work and all existing studies investigating age-related dif-
ferences in the HRF are based on the linearity of the
BOLD response in old participants. The linearity of the
BOLD response to stimuli of a specific duration has been
demonstrated for young participants [Boynton et al., 1996;
Dale and Buckner, 1997; Robson et al., 1998]. However, to
our knowledge, the appropriate linearity has not been
examined in old participants. Future studies should con-
sider examination of the linearity assumption in older par-
ticipants to clarify this issue.

CONCLUSION

Using both simulated and real data, we have shown
that age-related changes in the neuroanatomical structure
can introduce changes in the amplitude and timing of the
extracted HRF. We also showed that analyzing fMRI data
in subjects’ native space eliminates these effects. This find-
ing addresses a number of discrepancies in the literature
regarding age-related alterations in the amplitude and tim-
ing of the BOLD response. We also highlighted the impor-
tance of proper slice-timing correction in studies
investigating alterations in the timing of the HRF. Our

findings strongly suggest that fMRI data for studies of
aging should be analyzed in subjects’ native space, as
even advanced nonlinear co-registration could not remove
the effect of brain atrophy on the BOLD response.
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