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Abstract

Introduction: Positron emission tomography (PET) imaging targeting neurofibrillary

tau tangles is increasingly used in the study of Alzheimer’s disease (AD), but its util-

ity may be limited by conventional quantitative or qualitative evaluation techniques in

earlier disease states. Convolutional neural networks (CNNs) are effective in learning

spatial patterns for image classification.

Methods: 18F-MK6240 (n = 320) and AV-1451 (n = 446) PET images were pooled

frommultiple studies. We performed iterations with differing permutations of radioli-

gands, heuristics, and architectures. Performance was compared to a standard region

of interest (ROI)-based approach on prediction of memory impairment. We visualized

attention of the network to illustrate decisionmaking.

Results:Overall, models had high accuracy (> 80%) with good average sensitivity and

specificity (75% and 82%, respectively), and had comparable or higher accuracy to the

ROI standard. Visualizations of model attention highlight known characteristics of tau

radioligand binding.

Discussion: CNNs could improve tau PET’s role in early disease and extend the utility

of tau PET across generations of radioligands.

1 INTRODUCTION

The primary pathologic signs of Alzheimer’s disease (AD) are amy-

loid beta plaques and neurofibrillary tau tangles.1 Recently devel-

oped positron emission tomography (PET) radioligands that bind to

tau tangles in vivo—such as 18F-AV-1451 (“flortaucipir”), 18F-MK-

6240, and 18F-RO9482—can be used to detect regional tau pathol-

ogy in vivo, which can be correlated to magnetic resonance imaging

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2021 The Authors. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring published byWiley Periodicals, LLC on behalf of Alzheimer’s Association

(MRI) findings, which are definitionally nonspecific to AD. Uptake of

these radioligands can correspond to longitudinal biomarker change,3,4

correlate with performance on cognitive tests throughout the disease

spectrum,4–6 and be used to identify phenotypically distinct forms of

AD pathophysiology.7

The evaluation of tau PET images usually uses either regional stan-

dardized uptake value ratio (SUVR) quantification—which inherently

does not capture off-target binding or visuospatial patterns of binding
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present in disease variants;8 and visual reads9—which can suffer from

inter-reader reliability issues stemming from this method’s subjective

nature.10 Recent work has also sought also to integrate multiple gen-

erations of tau radioligands7,11,12 to help clarify tau deposition across

centers, which could allow for the construction of models from larger

andmore diverse populations. This could facilitate disease detection at

earlier states (at which point tau PET is currently thought to be a less

effective test13), a point at which intervention could more effectively

modify disease course.

Machine learning techniques, especially convolutional neural net-

works, have shown promise in a number of contexts important to

neuroimaging, including with MRI14,15 and fluorodeoxyglucose (FDG)

PET.16 Similarly, deep learningwithPET radioligandshasdemonstrated

improved research efficacy17 and diagnostic utility.18,19 To our knowl-

edge, relatively few studies exist that use tau PET,20–22 in part because

of current limitations/challenges of applying deep learning in clinical

research (especially the relatively small number of absolute subjects).

In approaching this problemwith deep learning,wehope to extend tau-

PET imaging into the identification of a feature of the disease, chiefly

cognitive impairment, at earlier disease states, when a deep learn-

ing model could incorporate additional features which may be under-

detected in tau scans of advanced disease cases. Furthermore, as more

potential therapies become available, a framework that is built on one

of the core A/T/[N] (amyloid/tau/neurodegeneration) criteria may be

adaptable to target engagement and therapeutic response, especially

when the expected effect is thought to be too subtle for existing meth-

ods of biomarker measurement.

As such, we created a neural network framework with tau PET

images—from two separate sources representing two PET radioli-

gands, from different generations, with highly similar functional bind-

ing (18F-MK-6240 and 18F-AV-1451)—trained on the classification

task of predicting cognitive impairment. Using the probability of

impairment status generated by these various neural networks from

imaging inputs, we attempt to provide a better predictor of disease

state based on tau PET imaging findings than a traditional SUVR-based

method. We also implement various strategies proposed and, inspired

by recent literature, aimed to improvemodel performance and attempt

to visualize the logic of this neural network in selecting imaging fea-

tures useful for this classification.

2 METHODS

2.1 Subject selection

2.1.1 MK-6240 subjects

MK-6240 PET scans (n = 320) were gathered from participants in

various ongoing studies at Columbia University Irving Medical Cen-

ter (CUIMC). These include theWashington Heights Inwood Columbia

Aging Project23 (n= 4), the NorthernManhattan Study of Metabolism

and Mind (NOMEM)24 (n = 200), the VALAD (Valacyclovir Treatment

of Alzheimer’s Disease) study25 (n = 57), and other studies recruiting

Research in Context

1. Systematic review: The authors reviewed the literature

using traditional sources (e.g., PubMed), indexing ser-

vices (e.g., Google Scholar), meeting abstracts, and pre-

sentations. We attempted to include the most pertinent

work published for both AV-1451 andMK-6240; and rel-

evant work done with neural networks, especially involv-

ing positron emission tomography (PET) imaging.

2. Interpretation: Our results suggest that deep learning

can be successfully applied to the analysis of multi-

generational tau PET images, and that this proceduremay

offer improvements over standard standardized uptake

value ratio–based approaches. Our visualizations suggest

qualitative and semi-quantitative evidence that neural

networks have explainable elements.

3. Future directions: Incorporating differing modalities

(especially multiple tau radioligands) may improve per-

formance of our model and provide new insights into

the correlation of tau PET with co-occurring physiol-

ogy, especially as tau imaging is expected to eventually

become more available for clinical use. More work is

needed to investigate whether advances in frameworks

provide any benefits in accuracy for early disease state.

participants at CUMC26 (n= 59). These studies—as well as the current

study—were reviewed by the institutional review board, and all partic-

ipating subjects gave consent for all procedures.

2.1.2 AV-1451 subjects

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The

ADNI was launched in 2003 as a public–private partnership, led by

principal investigator Michael W. Weiner, MD. We selected subjects

with available AV-1451 PET scans (n= 446) obtained fromADNI, com-

prising patients from the ADNI3 cohort.27,28 When multiple scans for

the same participant were available, we used the scan performedmost

recent to the data download.

A CONSORT diagram detailing subject selection is in supporting

information (Figure S1).

2.2 Clinical status determination

2.2.1 MK-6240 subjects

As a variety of studies were included, participants underwent dif-

fering cognitive testing, including the Mini-Mental State Examination
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F IGURE 1 Summary overview of project pipeline. A, Image preprocessing steps, involving (1) motion correction (with FSL), (2) registration of
each image to a template generated using ANTS, (3) creation of three time acquisition windows (80–100, 85–105, and 90–110minutes
post-injection) from each scan’s available windows (80–110) for theMK-6240 dataset (the 80–100minute timewindowwas used for AV-1451),
(4) rotation of each timewindow image by 7, 14, and 21 degrees along the sagittal plane for data augmentation (see SupplementaryMethods 2.3.2
for details), (5) averaging and internal normalization of uptake values. B, 2D image generation for input into 2D inceptionmodel. The orientation of
each coronal slice is shown (R= right, L= left, S= superior, I= inferior) and numbered here to show slice order from rostral to caudal. All images
subsequently shown are the same orientation.We elected to generate five such images for each subject, with differing coronal slices used. C,
Determination of binary label with either clinical status (MK-6240 dataset and AV-1451 dataset) or cognitive test result when formal
determination unavailable (MK-6240 dataset). D, Each cycle of 5-fold cross-validation, which involves input of train set images (pink) into the
model returning a scalar prediction of likelihood of binary impairment status, followed bymodel weight adjustment based on accuracy of the
prediction (using batch gradient descent), followed by testing external validity of themodel on an independent validation set (green). Themodel
with the highest accuracy after 30 epochs is then tested on a holdout test set (yellow). AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild
cognitive impairment; SRT-DFR, Selective Reminding Test, Delayed Free Recall

(MMSE) in some participants29 and Selective Reminding Test, Delayed

Free Recall (SRT-DFR)30 in all (only the SRT-DFR was available from

NOMEM participants). Participants were then designated as cogni-

tively normal (CN) or with presumed mild cognitive impairment or AD

(MCI/AD) if they met clinically determined criteria; or when not for-

mally assessed, a score on the SRT-DFR lower than 1.5 standard devi-

ations based on external norms (adjusted for age, sex, ethnicity, and

education).23

2.2.2 AV-1451 subjects

Procedures for cognitive testing and determination of

clinical status (CN vs. MCI/AD as above) are detailed

elsewhere.27,28

2.3 Imaging

18F-MK-6240 PET images were acquired in 5-minute time windows,

80 to 110minutes post injection (mean injected activity= 165.8MBq).

18F-AV-1451 PET images were also acquired at 5-minute time win-

dows, at 75 to 105 minutes to their site-specific protocols (mean

injected activity= 370MBq).

2.3.1 Amyloid status

Amyloid status was determined in subjects with MK-6240 PET with

18F-Florbetaben (FBB) using a visual read from trained readers.31

Amyloid status in subjects with AV1451 PET was determined with

a threshold using either FBB or 18F-AV45, which are detailed

elsewhere.28
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2.3.2 Data preprocessing

For MK-6240, preprocessing steps are summarized in Figure 1A.

Because multiple images were generated for the same subject with

these above procedures, care was taken to ensure no subject scans

were in both training and/or testing/validation sets, to prevent the con-

found of data leakage.32

For AV-1451, we performed the same registration and normaliza-

tionprocedure.Weaveragedacquisitionwindowsat80 to100minutes

(as has been previously done3,33), and we elected to use this time win-

dowwhen both AV-1451 andMK-6240 are used together as a dataset.

All subjects were registered (with aid ofMRI) to the same custom atlas

space created using Advanced Normalization Tools (ANTS).34

2.4 Model architecture

We trained twomodels, both based on the InceptionV3 architecture.39

We implemented both a conventional 2D model as well as a 3D model

using PyTorch,35 as well as the Python packages Numpy,36 Pandas,37

and Sci-Kit Learn.38 See Table S1 in supporting information for sum-

mary, and Supplementary Methods for details on configurations for

training.

2.4.1 Model architectures

The 2D model is a direct extension of the Inceptionv3 architecture.39

The networkwas pretrained on images from the ImageNet dataset and

these weights were preloaded onto the model prior to training. Simi-

lar to Ding et al.,16 we used multiple coronal slices as inputs (see Fig-

ure 1B).

Additionally,we adapted the inception architecture toworkwith 3D

images, changing applicable 2D kernels to 3D and adding a convolution

operation (to represent the added third dimension) in each of the appli-

cable InceptionV3 layers (where appropriate). See Figure S2 in sup-

porting information for a basic diagram of themodel.

2.5 Model training

Weused 5-fold cross-validation on all iterations of our training/testing

(70-10-20 train/validation/test split, see Figure 1C). We evaluated the

performance of the models on the MK-6240 images, the AV-1451

images, and the combination of the two datasets, and results for all

three configurations are reported. Configurations for all experiments

are available in Table S2 in supporting information.

2.6 Evaluation

To evaluate the performance of the various models, we performed

receiver-operator characteristic (ROC)analysis andcalculated thearea

under curve (AUC) andF1 score for themodel generated fromeachval-

idation fold.

2.6.1 Comparison method

Briefly, all regions of interest (ROIs) were based on the Braak ROIs first

reported in Schöll et al.40 All PET imageswere then registered to either

the aforementioned custom atlas space (MK-6240 images) or to their

respective MRI (AV-1451 images). We elected to use both an entorhi-

nal cortex SUVR (i.e., Braak I) as well as a composite SUVR using early

Braak regions (I–IV). The same ROIs were used for each radioligand

to determine SUVR values, including an inferior cerebellar reference

region. All PET images were partial volume corrected using the geo-

metric transfermatrix (GTM)method.41 Thresholds for tau “positivity”

to derive accuracy measures for the comparison method were calcu-

lated using Youden’s Index.42

2.7 Statistical analysis

Group-wise statistical analyses were performed for both demographic

comparisons (i.e., between-subject characteristics between controls

and patients) and model results (i.e., between various models’ predic-

tion for an individual’s subject tau PET image), including analysis of

variance (ANOVA) for continuous variables and Chi-squared tests for

categorical variables were performedwith R (version 3.6.2). ROC anal-

yses for impairment prediction for each test set were performed using

thePythonpackage Sci-Kit Learn.38 WecomparedROCcurves directly

with the DeLong test for correlated ROC curves.43

To test for potential influences of imbalanced participant character-

istics (age, education, amyloid status, sex) on the classification tasks,we

fit multivariate mixed effects models with cognitive impairment (rep-

resented as a z-score transformed composite cognitive score based on

MMSE and SRT-DFR available for each subject) as the response vari-

able; each tau-based measure (i.e., scaled SUVRs and neural network

derived impairment probability) and amyloid status as fixed effects;

and age, education, and sex as random effects. We test for relative

goodness of fit of each model with tau compared to amyloid only

models, and each model using a neural network–derived measure

against SUVR measures with an ANOVA on model residuals. We used

Satterthwaite approximation of degrees of freedom for the t-test to

test the significance of fixed effects on our respective models, and

used ANOVAs to derive likelihood ratios for significance of random

effects.44

2.8 Visualization

To visualize the activity of select 2D networks, we applied an occlu-

sion sensitivity analysis on select participants, as well as an averaged

sensitivity analysis across testing folds.45 We also performed a 3D

version of this analysis for two selected participants, and performed
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t-distributed stochastic neighbor embedding (t-SNE) analysis45 to

semi-quantitatively visualize our models’ feature learning.

3 RESULTS

3.1 Demographic characteristics

Demographic data are summarized in Table 1. Impaired patients were

older andmore likely to be men than unimpaired participants. The two

datasets were statistically different from each other in all categories

(P’s< .02).

This study consists of White (W), Black (B), Hispanic (H), and other

(Oth). “Other” includes Asian ethnicity (n = 11), mixed race (n = 5),

American Indian (n= 1), and declined to report (n= 2).

For participantswithMK-6240, 49 participantsmet criteria forMCI

and 72 for AD. For AV-1451, 84 participants met criteria for MCI and

43 for AD.

Amyloid status was unavailable for 5 participants with MK-6240

scans and 15 participantswithAV-1451 scans. The average (±standard

deviation) time between amyloid and tau scan for MK-6240 partici-

pants was 145 days (±151), while for AV-1451 participants was 157

days (±286).

Jitter plots for SUVR as stratified by CN/MCI/AD status are shown

in Figure S3 in supporting information.

3.2 Model performance

Overall, we were able to train every iteration of the models with aver-

age accuracy of at least 80% with a mean sensitivity 0.82 and mean

specificity 0.75 on respective test sets. Accuracy of each iteration of

the model and other metrics (AUC, F1 score) are summarized in Table

S3a/b in supporting information. Model accuracies (by fold); and AUC,

sensitivities, and specificities are summarized in Table S4a and S4b in

supporting information, respectively. P-values for statistical compar-

isons between models are summarized in Table S5 in supporting infor-

mation. We show t-SNE maps for all models in Figure S4 in supporting

information.

3.2.1 Model performance versus ROI-based
standard

The highest accuracy of the entorhinal cortex SUVR for MK-6240 was

69.4% at a cutoff of 1.28 (sensitivity = 0.53, specificity = 0.86), while

for our composite SUVR the highest accuracy was 69.8% at a cutoff of

1.51 (sensitivity= 0.51, specificity= 0.90). These two SUVRmeasures

did not have significantly differentAUC (0.72 vs. 0.73, Z= -0.6,P= .54).

For AV-1451, highest accuracy for entorhinal cortex SUVR was 78.4%

at a cutoff of 3.15 (sensitivity = 0.61, specificity = 0.77), while for our

composite SUVR, the highest accuracy was 79.4% at a cutoff of 2.49

(sensitivity= 0.22, specificity= 0.98). These two SUVRmeasures simi-

larly did not differ (0.71 vs. 0.74, Z= –1.0, P= .31).

We report comparisonswith our neural networkmodels to the com-

posite SUVR in themain text below.With AV-1451, the 2Dmodelmea-

sure trained solely on this radioligand had a better AUC compared

to AUC derived from SUVR measurements, though not significantly

(0.78 vs. 0.73, Z = –1.4, P = .17), whereas the measure derived from

the model trained using both radioligands had a significantly greater

AUC (0.89 vs. 0.72, Z= 5.2, P< .0001). There was no significant differ-

ence between the 3Dmodel trained solely on this radioligand (0.73 vs.

0.72, Z= 0.22, P= .83), whereas the 3Dmodel trained on both radioli-

gands was significantly better than SUVRmeasurement (0.80 vs. 0.73,

Z= 2.00, P= .04).

With MK-6240, both the 2D models trained on the single radioli-

gand (0.83vs. 0.74,Z=–3.5,P= .001) andonboth radioligands (0.85vs.

0.72, Z = 2.7, P = .006) were significantly better than SUVR measure-

ment. Similar results were found for our 3Dmodels trained on the sole

radioligand (0.83 vs. 0.74, Z = 3.2, P = .001) and on both radioligands

(0.82 vs. 0.74, Z= 2.5, P= .01).

Comparisons with entorhinal cortex SUVR were similar. These, and

other outcomes, are summarized in Table S5 in supporting information,

and in Figure 2.

3.2.2 Mixed effect models incorporating tau
derived measures

We wished to test the relative goodness of fit of tau measures in mod-

eling predicted scores on cognitive testing, when accounting for amy-

loid status and adjusted for the random effects of sex, age, and educa-

tion. A multivariate model using only amyloid status as a fixed effect

was significant for both radioligands (estimates ← 0.4, P’s < .0001).

As expected, education level was generally a strong significant random

effect (likelihood ratio tests [LRTs]>3.9,P’s< .05), althoughage tended

to only have a trend level effect (LRTs> 2.0, P’s≈.14).

Every tau-based measure had a significant, negative main effect in

their respective models (estimates < –0.15, P’s < .01). Interestingly,

amyloid status was not a significant fixed effect for MK subjects with

values derived from 2DMK images, or 2D and 3D modeled data using

both sets of radioligands.

Unsurprisingly, we found that each model incorporating a tau-

derived measure had superior fit compared to models using only amy-

loid status and random effects (χ2’s > 4.1, P’s < .05). Generally, multi-

variatemodels using taumeasures fromneural networks trained solely

on AV-1451 images did not have superior fit compared to AV-1451

SUVRs, whereas multivariate models using tau values derived from

models trained on MK-6240 images or the combined dataset did tend

to have strongly superior fit (χ2’s> 37.6, P’s< .0001). Interestingly, sex

was a significant random effect for AV-1451 subject models that did

not use neural network derived measures (LRTs > 5.8, P’s < .02). Age

had a significant effect in the AV-1451 subject model using both radi-

oligands (LRT= 4.6, P= .03), whereas education level had a significant
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F IGURE 2 ROC curves for 2D and 3Dmodels versus composite/entorhinal cortex (EC) SUVR. Shown by radioligand. Training our neural
networkmodels involved using either a single (“singular”) radioligand or pooling together both radioligands (“combined”). Predictions from our
“combined” 2D/3Dmodel configurations are assigned to the appropriate comparison group. 2D, two-dimensional input model;
3D, three-dimensional input model; EC, entorhinal cortex; ROC, receiver operating characteristic; SUVR, standardized uptake value ratio

effect in all models (LRTs > 3.9, P’s < .05). Results for all models are

summarized in Table S6 in supporting information.

3.3 Occlusion sensitivity analyses

3.3.1 2D models

We show select example occlusion sensitivity maps for our MK-6240

derived model (Figure 3). We see in these examples that this model

tended to assign importance to cortical areas (especially medial tem-

poral areas, see Figure 3 Image 1) for prediction of impairment, and

against whitematter areas for prediction of lack of impairment. Similar

general patterns are exhibited for the AV-1451 models (see Figure S5

in supporting information). See the description in Figure 3 for further

information, and Figure S6 in supporting information for an averaged

activationmap for bothmodels.

3.3.2 3D models

Given that the processing time for our occlusion sensitivity image cre-

ation for our 3D images was computationally expensive, we created

images for two selected participants (one with a highly probable true

positive prediction andonewith an intermediate but true negative pre-

diction) from each dataset model. As with results of our 2Dmodels, we

found in general that cortical—especially temporal—areas tended to

positively activate the network, whereas white matter regions tended

to suppress activation. Visualizations for these are shown in Figure S7

in supporting information.

4 DISCUSSION

We demonstrate that neural networks can be feasibly applied to tau

PET images through either a 2D or 3D analytical framework, with com-

parable or superior performance to standard SUVR-based methods.

We additionally show that multiple generations of tau radioligands

can be integrated into a single framework.7,11 Earlier deep learning

efforts with tau PET have sought to simplify20 and augment17 pre-

processing steps; and have provided initial proof of feasibility and

model interpretation.22 The main metrics of the models compare sim-

ilarly with prior deep learning classification tasks that used different

sets of PET radioligands,16,22,46 though comparisons are of course dif-

ficult given differences in available clinical outcomes. Furthermore,

while population differences within and between control and patient

groups do somewhat limit empirical conclusions on the data itself,

results of our goodness-of-fit analyses point to the promising util-

ity of neural network–derived measures for accurately estimating the

contribution of tau burden to cognitive performance because of AD

pathophysiology.

As both these radioligands have been used primarily for research

purposes (and with AV-1451 only recently gaining Food and Drug

Administration approval) with limited work on systems of visual

interpretation,9 we did not test the models against clinicians. No stan-

dard method exists to reliably aid diagnostic and management guid-

ing decisions with these scans, though there is evidence that they—in

conjunction with other biomarkers—can provide reproducible quan-

titative biomarkers in routine clinical decision making. Our success-

ful application of deep learning to a framework using both radioli-

gands suggests that our deep learning–derived measure could be

standardized/harmonized across multiple radioligands, and provide
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F IGURE 3 Select heat maps for ourMK-6240model with selected subjects. Negative values represent regions of positive predictive
importance for impairment, whereas positive areas represent areas of negative predictive importance. The scale to the right of images represents
proportional change from baseline prediction due to occlusion of specified region (i.e., more “important” areas have a larger absolute value and are
brighter/darker on themaps).We highlight a specific slice for each example subject to the right. The probability of impairment as predicted by the
model interpretation of the image is shown along with amyloid and actual impairment status to the right. The orientation of these heat map images
(representing the 3× 3 coronal slice images fed into themodel) is the same as explicated in Figure 1. The leftmost column of images represents the
input image, themiddle column represents the generated sensitivity maps, and the paired images in the rightmost column are a representative
comparison slice for each image and heatmap for each subject. The first image represents a true positive prediction, with relevance conferred by
the sensitivity analysis to cortical binding inmedial temporal and interestingly a contralateral parietal area. For thesemodels, differential
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an intuitive (i.e., probabilistic) and unitary measure in a way not

directly possible with current methods.11 Continued work on a multi-

radioligand approach may allow the construction of higher confidence

research/clinicalmodels and ease of tau PET interpretation, perhaps as

diagnostic aid in challenging clinical contexts, as has been reported for

work with amyloid PET.18,19

Our work also adds to growing evidence that imaging tau5,13 has

utility as a high-specificity biomarker in the diagnosis of AD, with

good—albeit lower—performance in less impaired individuals where

tau deposition in early Braak regionsmay be the first sign.47,48 A future

deep-learning–based system to detect early disease and predict con-

version may indeed rely on MRI,15 if only because of greater availabil-

ity of data (especially longitudinal). Indeed, our prior work has demon-

strated the value of deep learning in pure MRI, both in AD and sta-

ble and progressingMCI,14 as a standalonemethod and supplement to

existing biomarkers. But although accuracies resulting from our study

(and others) have shown exceptional promise, they are reflective of

changes only observable on T1-weighted brain scans. Tau PET reflects

one component of theA/T/[N] criteria and it is important to consider all

core biomarkers irrespective of accuracy of the other. Someeven argue

that tau PET can be a “one-stop-shop” for learning about each compo-

nent of this criteria.49 It still may be important to consider a tau PET

framework, as evidence emerges of the association between differen-

tial tau deposition patterns and clinically distinct trajectories of AD,7

which could impact clinical management.

Much prior deep-learning–based classification work has focused on

training models that learn features prominent in AD subjects com-

pared to controls, and attempts to map this onto the classification

of MCI.15,22 While an effective approach, we explicitly trained our

model using amore heterogeneous (but larger size) sample of impaired

individuals (spanning from early impairment to highly probably AD),

achieving similar “absolute” performance. Using this “noisier” sample

has potential benefits for our model’s generalizability and robustness

to real-world tasks, where many subjects with putative “MCI” do not

end up developing AD in a reasonable timeframe.50 As such, incorpo-

rating more MCI data, with greater detail about the prodromal status

(by confirming stability or progression to AD) would extend potential

diagnostic utility of this model.

Our occlusion sensitivity analysis suggests that our networks can

learn expected patterns of specific cortical binding in regions known to

be affected during the pathogenesis of AD, which is in agreement with

prior work22 that used similar visualization techniques on AV-1451.

While no specific brain region is consistently and specifically implicated

through this analysis, these findings are consistentwith priorwork that

suggests that deep learning algorithms may make classification deci-

sions using non-linear interpretations of imaging data,16 and seems to

agreewith the observation inAV-1451 that conventional Braak-staged

regions may not be sufficient for accurate diagnosis or staging.5 These

visual findings also suggest that neural-network–based analysis of tau

PET for diagnostic/research purposes would be mathematically and

heuristically distinct from ROI-based quantification.

As for constructing a 2D versus 3D model for this data, it is impor-

tant to consider that 2D data greatly benefits from pre-trained mod-

els whereas 3D data may have advantages in identifying features in

higher dimensional space. Continued experimentation with some of

the augmentation strategies used here may help increase the perfor-

mance of these models, especially our 3D implementations. While we

chose to use amore establishedmodel framework to take advantage of

pretraining, newer architectures may offer improvements on compu-

tational cost or performance. Given these future improvements, deep

learning could become an essential utility for the discovery of these

complex spatial binding relationships, especially as we work as a field

to standardize the interpretation of tau radioligands for both research

and eventual clinical adaptation.
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