
Yian Gu, PhD
Adam M. Brickman, PhD
Yaakov Stern, PhD
Christian G. Habeck,

PhD
Qolamreza R. Razlighi,

PhD
José A. Luchsinger, PhD
Jennifer J. Manly, PhD
Nicole Schupf, PhD
Richard Mayeux, MD
Nikolaos Scarmeas, MD

Correspondence to
Dr. Gu:
yg2121@columbia.edu

Supplemental data
at Neurology.org

Mediterranean diet and brain structure in a
multiethnic elderly cohort

ABSTRACT

Objective: To determine whether higher adherence to a Mediterranean-type diet (MeDi) is related
with larger MRI-measured brain volume or cortical thickness.

Methods: In this cross-sectional study, high-resolution structural MRI was collected on 674 elderly
(mean age 80.1 years) adults without dementia who participated in a community-based, multiethnic
cohort. Dietary information was collected via a food frequency questionnaire. Total brain volume
(TBV), total gray matter volume (TGMV), total white matter volume (TWMV), mean cortical thickness
(mCT), and regional volume or CT were derived from MRI scans using FreeSurfer program. We exam-
ined the association of MeDi (scored as 0–9) and individual food groups with brain volume and thick-
ness using regression models adjusted for age, sex, ethnicity, education, body mass index, diabetes,
and cognition.

Results: Compared to lower MeDi adherence (0–4), higher adherence (5–9) was associated with
13.11 (p5 0.007), 5.00 (p5 0.05), and 6.41 (p5 0.05) milliliter larger TBV, TGMV, and TWMV,
respectively. Higher fish (b57.06, p50.006) and lower meat (b58.42, p50.002) intakes were
associated with larger TGMV. Lower meat intake was also associated with larger TBV (b 5 12.20,
p 5 0.02). Higher fish intake was associated with 0.019 mm (p 5 0.03) larger mCT. Volumes of
cingulate cortex, parietal lobe, temporal lobe, and hippocampus and CT of the superior-frontal region
were associated with the dietary factors.

Conclusions: Among older adults, MeDi adherence was associated with less brain atrophy, with an
effect similar to 5 years of aging. Higher fish and lower meat intake might be the 2 key food ele-
ments that contribute to the benefits of MeDi on brain structure. Neurology® 2015;85:1744–1751

GLOSSARY
AD5 Alzheimer disease; AGE5 advanced glycation end products; BMI5 body mass index; CDR5Clinical Dementia Rating;
DSM-III-R 5 Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised; FFQ 5 food frequency question-
naire; GLM 5 generalized linear model; GM 5 gray matter; ICV 5 intracranial volume; MANOVA 5 multivariate analysis of
variance; MCI 5 mild cognitive impairment; mCT 5 mean cortical thickness; MeDi 5 Mediterranean diet; PUFA 5 polyun-
saturated fatty acids; ROI 5 region of interest; SFA 5 saturated fats; TBV 5 total brain volume; TGMV 5 total gray matter
volume; TWMV 5 total white matter volume; WHICAP 5 Washington Heights/Hamilton Heights Inwood Columbia Aging
Project; WM 5 white matter.

The Mediterranean diet (MeDi) has been recognized from epidemiologic studies over several dif-
ferent populations worldwide as one of the healthiest diets.1 We have previously showed that
adherence to theMeDi was associated with reduced risk of Alzheimer disease (AD)1 and our results
have been confirmed in a few populations,2–5 although not in others.6 While population differ-
ences in absolute levels of foods/nutrients intake, cultural and socioeconomic aspects, or comor-
bidity burdens may contribute to the inconsistencies of the findings, subjectivity and heterogeneity
in procedures of clinical diagnosis may also play a role. Neuroimaging markers are sensitive
measurements of structural changes in the aging brain, allowing us to examine associations
between diet and aging-related brain changes that might not be detectable using clinical assess-
ments.7 Thus, it would be interesting to examine the relationship between MeDi and structural
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neuroimaging markers such as brain atrophy
and cortical thickness.8 To our knowledge, only
2 studies have examined this relationship,9,10

which were relatively small, and had little
demographic diversity, potentially limiting the
extrapolation of their findings.

In the current study, we examined the associ-
ation between MeDi adherence and structural
MRI-assessed brain volume and cortical thickness
among elderly participants of a community-
based, multiethnic cohort, the Washington
Heights/Hamilton Heights Inwood Colum-
bia Aging Project (WHICAP).

METHODS Study design. We performed a cross-sectional

study to examine the association between MeDi and structural

brain measures.

Study participants. The current study included participants

from an ongoing prospective study of aging and dementia

(WHICAP) who were identified from a probability sample of

elderly Medicare beneficiaries ($65 years) residing in northern

Manhattan.11 The original sample for this study included 2,776

participants. At baseline, a physician obtained each participant’s

medical and neurologic history, conducted a standardized physical

and neurologic examination, and assessed their health and function.

Cognitive status was assessed using a neuropsychological battery.12

Participants were followed every 18 months, repeating the baseline

examinations. The diagnosis of dementia was based on standard

research criteria DSM-III-R,13 using all available information at a

consensus conference. The type of dementia was subsequently

determined using the criteria of the National Institute of Neuro-

logical and Communicative Disorders and Stroke–Alzheimer’s Dis-

ease and Related Disorders Association for the diagnosis of probable

or possible AD,14 and using Petersen15 criteria for the diagnosis of

MCI, as described elsewhere.16 Severity of dementia was rated with

the Clinical Dementia Rating (CDR) scale.

The imaging substudy was started in 2004 among active

dementia-free WHICAP participants.17 Overall, 769 WHICAP

participants received MRI scans, and they were slightly younger,

and more likely to be African American or male compared to those

who were eligible but did not undergo MRI.17 Among them, T1

images were not available for 45 participants. We further excluded

10 participants without diet data and 40 participants who met

diagnostic criteria for dementia at the neuroimaging visit. There-

fore, in the current analysis we included a total of 674 (88% of 769)

participants without dementia.

Standard protocol approvals, registrations, and patient
consents. The Columbia University Institutional Review Board

has reviewed and approved this project. All individuals provided

written informed consent.

MRI protocol. Scans were acquired on a 1.5T Philips (Best, the

Netherlands) Intera scanner at Columbia University. All the T1 im-

ages were analyzed using Freesurfer (V.5.1) (http://surfer.nmr.mgh.

harvard.edu/). Freesurfer output underwent visual quality control and

manual correction whenever necessary, and then Freesurfer steps were

repeated. Regional cortical thicknesses and volumetric measures were

obtained in 34 regions of interest (ROI) in each hemisphere through a

series of steps including removal of nonbrain tissue using a hybrid

watershed/surface deformation procedure,18 followed by automated

Talairach transformation, segmentation of the subcortical white

matter (WM) and deep gray matter (GM) volumetric structures,19

intensity normalization,20 tessellation of the GM-WM boundary,

automated topology correction,21 and surface deformation following

intensity gradients to optimally place the gray/white and gray/CSF

borders at the location where the greatest shift in intensity defines

the transition to the other tissue class.22,23

Volume measures. We first explored global brain measures such

as total brain volume (TBV), total GM volume (TGMV), and total

WM volume (TWMV). Individual Desikan-Killiany ROIs were

combined into 5 regions (left and right hemispheres summed) for

regional cortical volume analysis (https://surfer.nmr.mgh.harvard.

edu/fswiki/CorticalParcellation), including frontal (sum of superior

frontal; rostral and caudal middle frontal; pars opercularis, pars

triangularis, and pars orbitalis; lateral and medial orbitofrontal;

precentral; paracentral; frontal pole), parietal (superior parietal;

inferior parietal; supramarginal; postcentral; precuneus), temporal

(superior, middle, and inferior temporal; banks of the superior

temporal sulcus; fusiform; transverse temporal; entorhinal;

temporal pole; parahippocampal), occipital (lateral occipital;

lingual; cuneus; pericalcarine), and cingulate (rostral anterior;

caudal anterior; posterior; isthmus). In addition, 5 regions in the

depths of the brain were also analyzed, including hippocampus,

caudate, putamen, thalamus, and amygdala.

To adjust for differences in head size across participants, regres-

sion models were run with intracranial volume (ICV) as the indepen-

dent variable and brain volume as the outcome variable, and the

regression residuals were then used in the analyses.

Cortical thickness. We calculated mean cortical thickness

(mCT) across all ROIs within each participant. We also selected

12 FreeSurfer CT ROIs (mean of left and right hemispheres)

to represent 9 regions that have been shown to reflect AD-

associated neurodegeneration,24 including (1) entorhinal cortex

and parahippocampus (rostral medial temporal lobe), (2) inferior

temporal lobe, (3) temporal pole, (4) inferior parietal lobe (angular

gyrus), (5) superior frontal lobe, (6) superior parietal lobe, (7)

supramarginal gyrus, (8) precuneus, and (9) pars opercularis, pars

orbitalis, and pars triangularis (inferior frontal lobe).25 CT was not

adjusted for ICV.

Dietary information. Information about average diet over the

prior year was collected using Willett’s semi-quantitative food

frequency questionnaire (FFQ) (Channing Laboratory, Cambridge,

MA), administered by trained interviewers in English or Spanish.

We have previously reported good validity and reliability of various

components of the FFQ in WHICAP.26,27

We calculated the MeDi score as described in our previous re-

ports.1 Individuals were assigned a value of 1 for each beneficial food

component (including vegetables, legumes, cereals, fish, fruits/nuts,

and a ratio of monounsaturated fats to saturated fats [SFA]) if his or

her caloric-adjusted consumption of the food was equal to or greater

than the sex-specific population median, for each detrimental com-

ponent (meat and dairy products) if the caloric-adjusted consump-

tion was below the median, and for mild to moderate alcohol

consumption (.0 to ,30 g/day). The MeDi score (ranging 0–9)

was calculated for each participant by summing the scores in the 9

food components, with higher MeDi score indicating closer adher-

ence to the MeDi. The diet data were obtained on average 0.6

(SD 5 1.8) years before the MRI scan.

Other information. We considered continuous variables includ-

ing age (years), education (years), caloric intake, and body mass

index (BMI; kg/m2). Ethnicity, including African American (black

non-Hispanic), Hispanic, white (non-Hispanic), or other, based on

self-report using the format of the 2000 US census, was used as a
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dummy variable, with non-Hispanic white as the reference. Sex

(female vs male) and APOE genotype (presence of either 1 or 2

vs absence of e4 alleles) were used as dichotomous variables. Stroke

information was self-reported by participants or relatives as well as

neurologic examination or medical records review. Presence or

absence of heart disease, diabetes mellitus, and hypertension were

based on self-report or use of medications. These 4 vascular

comorbidities were used as dichotomous variables with absence of

the condition used as the reference. Cognition was determined

using a neuropsychological battery12 and exploratory factor

analysis was used to derive 4 composite scores (memory,

language, executive/speed, and visuospatial) based on selected

neuropsychological tests scores.12

Statistical analyses. Characteristics of participants by MeDi

adherence and by tertiles of TBV or mCT were compared using

t test for continuous variables and x2 test for categorical variables.

Generalized linear models (GLMs) were used to assess the

association between MeDi and brain MRI markers, initially

unadjusted (model 1), then adjusted for age at time of scan only

Table 1 Characteristics of the study population

Total Lower MeDi (0–4) Higher MeDi (5–9) pa

No. of participants 674 370 304

Demographics and clinical factors

Age, y, mean (SD) 80.1 (5.6) 80.1 (5.8) 80.1 (5.3) 0.96

Education, y, mean (SD) 10.7 (4.8) 10.7 (4.7) 10.7 (4.9) 0.92

Energy intake, calories, mean (SD) 1,399.6 (533) 1,417.2 (543) 1,378.3 (518) 0.35

Female, n (%) 454 (67) 247 (67) 207 (68) 0.71

APOE e41, n (%) 163 (25) 91 (25) 72 (24) 0.82

Ethnicity, n (%)

White 187 (28) 102 (28) 85 (28) 0.27

Black 235 (35) 140 (38) 95 (31)

Hispanic 239 (36) 122 (33) 117 (39)

Others 13 (1.9) 6 (1.6) 7 (2.3)

Stroke, n (%) 70 (10.5) 41 (11) 29 (9.7) 0.53

Diabetes, n (%) 139 (21) 77 (21) 62 (21) 0.85

Hypertension, n (%) 491 (74) 263 (72) 228 (76) 0.28

Heart disease, n (%) 139 (21) 84 (23) 55 (18) 0.13

BMI, kg/m2, mean (SD) 27.8 (5.6) 28.0 (6.1) 27.7 (4.9) 0.49

Cognitive z scores

Language, mean (SD) 0.32 (0.63) 0.29 (0.64) 0.35 (0.63) 0.20

Memory, mean (SD) 0.14 (0.73) 0.10 (0.74) 0.19 (0.71) 0.11

Speed, mean (SD) 0.21 (1) 0.26 (0.96) 0.14 (1.05) 0.15

Visuospatial, mean (SD) 0.29 (0.58) 0.27 (0.57) 0.31 (0.59) 0.43

Mean cognition, mean (SD) 0.23 (0.59) 0.21 (0.59) 0.24 (0.59) 0.48

CDR 0.5, n (%) 221 (33) 132 (36) 89 (29) 0.08

Brain structural measures

mCT, mm, mean (SD) 2.46 (0.12) 2.45 (0.11) 2.46 (0.12) 0.44

ICV, mL, mean (SD) 1,304 (1,557) 1,306 (151) 1,302 (160) 0.74

Brain volume, mL, mean (SD)

TBV 871 (101) 865 (99) 878 (103) 0.11

TGMV 519 (52) 517 (51) 522 (52) 0.16

TWMV 375 (55) 372 (55) 379 (55) 0.10

ICV-adjusted residuals, mL, mean (SD)

TBV 0 (63) 26.5 (63) 7.9 (61) 0.003

TGMV 0 (35) 22.9 (35) 3.6 (35) 0.017

TWMV 0 (43) 23.6 (42) 4.4 (43) 0.016

Abbreviations: BMI5 bodymass index; CDR5 Clinical Dementia Rating; ICV5 intracranial volume; mCT5mean cortical thickness;
MeDi 5 Mediterranean diet; TBV 5 total brain volume; TGMV 5 total gray matter volume; TWMV 5 total white matter volume.
ap Values from analysis of variance for continuous variables and x2 for categorical variables.
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(model 2), and then adjusted for age at time of scan, sex, ethnic-

ity, education, BMI, diabetes, and mean cognitive z score (model

3). The variables were selected into model 3 based on their asso-

ciations with MeDi and brain measures. MeDi score was exam-

ined as a continuous variable as well as a dichotomized variable by

population median level (i.e., high 5–9 vs low 0–4).

We performed a few supplementary analyses. First, we exam-

ined which of the 9 food components (dichotomized) of MeDi

might drive the relationship between MeDi and brain measures.

Second, we additionally adjusted for APOE genotype, caloric

intake, hypertension, heart disease, and stroke in model 3. Third,

we examined whether sex, APOE, or ethnicity modified the rela-

tionship between MeDi and brain measures. Fourth, we excluded

participants with MCI and repeated the analyses on global brain

measures among cognitively normal participants only. Finally, we

explored regional brain measures in relation to diet using multivar-

iate analysis of variance (MANOVA) to see whether the linear

combination of the 10 regional volumes (as described previously)

maximally distinguishes the diet groups; in other words, is associ-

ated with dietary variables. We then examined univariate F tests for

individual ROIs. Any ROI found to be significantly associated with

the dietary variables was further examined in adjusted GLMs to

estimate its association with diet. A similar analysis was conducted

for 12 thickness ROIs. Because individual ROI analyses were

guided by the MANOVA results, and were essentially exploratory,

no correction for multiple comparisons has been performed.

Statistical analyses were performed using PASW Statistics

program (IBM, Chicago, IL). All p values were based on 2-sided

tests with the significance level set at 0.05.

RESULTS Characteristics of the study population. Par-
ticipants with lower and higher MeDi adherence were
comparable in terms of their demographic and cogni-
tive profiles (table 1). Compared to lower MeDi
adherence participants, those with higher adherence

had similar mCT, but larger TBV, TGMV, and
TWMV (table 1).

Individuals who had larger TBV tended to be
younger, to have higher education, to be male, to
be less likely to have diabetes, to have lower BMI,
to be less likely to have mild dementia (CDR 5

0.5), and to have better cognition in each of the 4
domains. Similar patterns were found for TGMV and
TWMV (data not shown), and mCT, except that
those with larger mCT were more likely to be female
and had higher percentage of Hispanic but lower per-
centage of black participants (table e-1 on the
Neurology® Web site at Neurology.org).

MeDi adherence with global brain MRI markers.Higher
MeDi score was associated with larger TBV, TGMV,
and TWMV after adjusting for multiple covariates
(table 2 and figure). In the model with dichotomous
MeDi and age, 1 year increase in age was associated
with 2.62 mL less TBV (p, 0.0001), indicating that
the average difference in TBV between the higher and
the lower MeDi score (14.43 mL) was about the same
magnitude of effect corresponding to the change in
TBV during half-decade of aging.

Supplementary analyses. Among the 9 food components
ofMeDi, higher fish intake, lowermeat intake, andmod-
erate alcohol intake were associated with larger brain vol-
umes when adjusted for age. The associations remained
significant for fish and meat in multivariable-adjusted
models. Higher intake of fish was associated with
thicker mCT (table e-2 and figure).

Table 2 Cross-sectional association between Mediterranean diet and global brain measures

TBV, mL TGMV, mL TWMV, mL mCT, mm

B p B p B p B p

Model 1: Unadjusted

MeDi, per unit 4.13a 0.01a 2.47a 0.007a 1.93 0.09 0.003 0.35

MeDi, high vs low 16.95a 0.003a 7.97a 0.01a 8.76a 0.03a 0.01 0.53

Model 2: Adjusted for age only

MeDi, per unit 3.37a 0.01a 1.79a 0.02a 1.77a 0.05a 0.002 0.44

MeDi, high vs low 14.43a 0.002a 6.48a 0.01a 7.9a 0.01a 0.007 0.44

Model 3: Adjusted for age, sex, education, ethnicity,
BMI, diabetes, and mean cognition

MeDi, per unit 3.07a 0.03a 1.31 0.08 1.55 0.10 0.001 0.63

MeDi, high vs low 13.11a 0.007a 5.00a 0.05a 6.41a 0.05a 0.004 0.66

Model 3: Excluding MCI participants,b adjusted for age, sex,
education, ethnicity, BMI, diabetes, and mean cognition

MeDi, per unit 4.02a 0.01a 2.32a 0.006a 1.85 0.08 0.002 0.46

MeDi, high vs low 14.87a 0.007a 6.79a 0.02a 6.87 0.07 0.005 0.63

Abbreviations: BMI5 body mass index; MCI5 mild cognitive impairment; mCT5mean cortical thickness; MeDi5 Mediterranean
diet; TBV 5 total brain volume; TGMV 5 total gray matter volume; TWMV 5 total white matter volume.
aSignificant (p , 0.05).
b Excluding 159 MCI participants, 23 participants whose cognitive data were insufficient for MCI diagnosis, and 24
participants missing 1 or 2 covariates. Model based on 468 remaining participants.
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Including additional covariates (see Statistical
analyses) did not change the results much (data not
shown).

The relationships of MeDi with brain MRI meas-
ures were not significantly modified by sex, ethnicity,
or APOE e4 status (data not shown).

MeDi or its components remained associated with
brain measures among 478 cognitively normal partic-
ipants (table 2 and table e-2).

Multivariate analysis indicated marginally signifi-
cant differences betweenMeDi groups on a linear com-
bination of the volumes in 10 regions (Wilks l5 0.97,
p5 0.06), and on a linear combination of the 12 ROIs
CT (Wilks l 5 0.97, p 5 0.05). The volumes of the
cingulate, parietal, temporal, and hippocampus regions
(univariate p values , 0.05) contributed most to dis-
tinguish the low and highMeDi adherence. The CT in

the superior-frontal region (p 5 0.03) contributed
most to distinguish between low and high MeDi
adherence. Adjusted GLM analyses confirmed these
associations (table 3). Higher fish and lower meat in-
takes tended to be associated with these regions, except
for hippocampus (table e-3, model 3). Fruit intake was
associated with lower temporal and hippocampus vol-
umes. Lower meat intake was associated with larger CT
of the superior-frontal region (table e-3, model 3).

DISCUSSION In this cross-sectional study of an elderly
population without dementia, we found that participants
who adhered more to a MeDi had larger brain volumes,
both in GM and WM. The association was driven most
likely by high fish and low meat consumption. MeDi
was associated with volume in cingulate cortex, parietal
lobe, temporal lobe, and hippocampus, and CT of
the superior-frontal region. The absolute effect of
MeDi on brain measures were relatively small.
However, the magnitude of the effect of consuming at
least 5 recommended MeDi food components on
TBV is comparable to that of 5 years of increasing age.
Similarly, having fish intake of 3–5 oz at least weekly,
or keeping meat intake 100 g daily or less, may also
provide a considerable protection against brain atrophy
that is equivalent to about 3–4 years of aging. Thus, a
modifiable factor such as diet is of interest from the
prevention point of view.

To our knowledge, only 2 studies have examined the
relationship between MeDi and brain atrophy. In con-
trast to our findings, a Swedish study found no associa-
tion between the MeDi score and brain volumes.9 The
Swedish population might have different dietary habits
(for example, lower intake of legumes) compared to our
US population. In addition, our study population is
more diverse in terms of ethnicity (white, black, and
Hispanic participants) and of lower education level.
Nevertheless, similar to our study, the Swedish study
also found a negative association between meat intake
and TBV,9 and a positive association between dietary
intakes of omega-3 polyunsaturated fatty acids (v-3
PUFA) from marine or fish sources and TGMV.28

We found MeDi, more fish, and less meat intakes were
related with larger brain volume in cingulate cortex,
parietal lobe, temporal lobe, and hippocampus, partially
echoing a previous study that found regular fish con-
sumption was associated with larger GMV in the hip-
pocampus, posterior cingulate, precuneus, and orbital
frontal cortex.29 However, null association with brain
atrophy has also been reported for fish30 or v-3 PUFA
dietary pattern.31 Taken together, although data regard-
ing the relationship of MeDi or its components and
markers of brain atrophy are scarce and mixed, the find-
ings from our study and some others suggested a poten-
tial beneficial role of MeDi or fish intake, and a
detrimental role of meat intake.

Figure Association of Mediterranean diet, fish, and meat with brain volume and
cortical thickness

(A) Mean levels (intracranial-adjusted residuals) of total brain volume (TBV), total gray matter
volume (TGMV), and total white matter volume (TWMV) among participants with low (score
0–2), middle (score 3–5), and high (score 6–9) levels of adherence to the Mediterranean diet
(MeDi), among tertiles of fish consumption (caloric intake adjusted residuals), and among
tertiles of meat consumption (caloric intake adjusted residuals). (B) Mean cortical thickness
by levels of MeDi, fish, and meat consumption.
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Only one previous study10 examined the relation-
ship between MeDi and cortical thickness. In this
small study of 52 cognitively normal middle-aged
participants, higher MeDi adherence was associated
with greater thickness of 3 ROIs (orbital frontal cor-
tex, entorhinal cortex, posterior cingulate cortex of
the left hemisphere).10 Combined with our findings,
it seems that at least some of the AD-vulnerable cor-
tical regions, especially the frontal region, are related
with MeDi.

Accumulating evidence has shown that a closer
adherence to the MeDi was associated with a reduced
risk of developing MCI or AD.1–5 While the mecha-
nisms for the beneficial role ofMeDi on cognitive health
remain largely unknown, the current study suggests a
potential pathway involving the brain structure mainte-
nance or delaying aging-related atrophy, especially as
brain atrophy has been related to cognitive decline.32

MeDi may be related to accumulation of amyloid b33

or phosphorylation and aggregation of tau,34 which in
turn contributes to the brain atrophy.35 Fish contains
several beneficial nutrients including v-3 PUFA, vita-
min D, and B vitamins. The beneficial effects of v-3
PUFA on brain include increasing neurite outgrowth
and synaptogenesis, neurogenesis, and anti-inflamma-
tion.36 Vitamin D can protect against biological pro-
cesses associated with AD and cognition, including
amyloid-b deposition, inflammation, and calcium
homeostasis,37 and vitamin D depletion has been linked
with brain atrophy.38 Studies have shown that B vita-
mins, including B6, B12, and niacin, play important
roles in slowing brain atrophy.39 Meats are high in
SFA and protein and are prone to advanced glycation
end products (AGE) formation through high-
temperature cooking. A large body of research shows
that diets high in AGE may promote AD amyloid-b

generation, increased tau phosphorylation, insulin resis-
tance, and inflammation.40

A few limitations of the present study need to be
noted. Our study is cross-sectional so we cannot
exclude the possibility of reverse causality, i.e., that
changes in brain structure result in behavioral changes
including alterations in dietary habits. Longitudinal
studies are needed to examine whether baseline MeDi
adherence is associated with less brain atrophy over
time. We cannot completely rule out the possibility
of residual confounding. Finally, despite a relatively
large overall sample size, our study might be under-
powered to examine interactions and for stratified anal-
yses in subgroups.

Our study has many strengths. Few studies exist
examining the relationship between MeDi and brain
structures. Our study added new evidence to this line
of research by including a large sample of study partic-
ipants and by examining different brain regions. Our
study examined the relationship among multiple eth-
nic groups, including not only white but also African
American and Hispanic participants, and is thus likely
to be more generalizable to the increasingly diverse US
population.17 We used comprehensive cognitive assess-
ments with full neuropsychological testing and physi-
cian evaluations administered to all participants. The
final diagnoses of dementia and MCI were based on
consensus diagnosis according to standard research cri-
teria.13–15 We excluded participants with dementia and
MCI, thus reducing potential recall bias on dietary
intake due to memory deficits. Several potential con-
founding factors have been adjusted for in the analyses.
We analyzed multiple types and levels of brain meas-
ures, including volume and cortical thickness, GM and
WM volumes, cortical and deep GM volumes, and
finally, selected ROIs.

Table 3 Cross-sectional association between Mediterranean diet and regional gray matter volume or thickness

Cingsulate Parietal Temporal Hippocampus
Superior-
frontal CT

B p B p B p B p B p

Model 1: Unadjusted

MeDi per unit 0.12a 0.01a 0.43a 0.01a 0.02a 0.06a 0.03a 0.08a 0.01a 0.06a

MeDi high vs low 0.41a 0.01a 1.76a 0.004a 0.08a 0.04a 0.14a 0.03a 0.03a 0.01a

Model 2: Adjusted for age only

MeDi per unit 0.12a 0.01a 0.45a 0.01a 0.02a 0.03a 0.04a 0.03a 0.01a 0.05a

MeDi high vs low 0.41a 0.01a 1.75a 0.003a 0.08a 0.03a 0.14a 0.02a 0.03a 0.01a

Model 3: Adjusted for age, sex, education, ethnicity,
BMI, diabetes, and mean cognition

MeDi per unit 0.10a 0.04a 0.37a 0.03a 0.02a 0.07a 0.03a 0.10a 0.01a 0.13a

MeDi high vs low 0.37a 0.02a 1.40a 0.02a 0.07a 0.05a 0.11a 0.08a 0.03a 0.02a

Abbreviations: BMI 5 body mass index; MeDi 5 Mediterranean diet.
a Significant (p , 0.05).
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Overall, our study suggests that closer adherence
to MeDi might be associated with larger brain vol-
umes in elderly people, an association conceivably
driven by higher fish and lower meat intake. Cingu-
late, parietal, and potentially temporal regions might
be more relevant in terms of the association with
MeDi adherence, while higher intake of fish and
lower intake of meat seem to nonspecifically protect
against atrophy across cortical regions.
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