It was 1947 when Anthony Donn, M.D., a newly minted Yale graduate, began his medical studies at Columbia. A few years later, Dr. Donn joined the faculty of the Department of Ophthalmology. He rose to the rank of Chairman in 1989, and held that post until his retirement in 1995.

"There are two important aspects of these findings," explains Rando Allikmets, Ph.D., the William and Donna Acquavella Associate Professor of Ophthalmology, Rando Allikmets, Ph.D.

A simple infection, contracted perhaps years earlier, combined with a tiny variation in the code of the immune response gene known as Factor H, can prompt a chain of events that may ultimately result in age-related macular degeneration (AMD). AMD is the progressive loss of vision that occurs when pockets of debris (known as "drusen") form on the macula, the portion of the retina responsible for fine, central vision. AMD is the leading cause of blindness in the elderly, and it is estimated that thirty percent of the population will have AMD by age 75.

Sparrow Named New Anthony Donn Professor

IN THIS ISSUE...
- View from the Chair............... 2
- Brown Glaucoma Lab............... 3
- Low Vision.......................... 5
- From Vision to Reality............. 7
- Visionaries & Luminaries.......... 8
- Faculty Spotlight.................. 11
- In Memoriam....................... 15
Dear Friends,

In the blink of an eye, ten years have passed since Dr. Stanley Chang was appointed Chairman of the Department of Ophthalmology at Columbia. Through a decade of unprecedented growth, he has solidified and strengthened the Harkness Eye Institute's reputation as a leading international center for the diagnosis and treatment of diseases of the eye. It is my pleasure to open this issue of the Viewpoint by celebrating his most compelling achievements.

Patient Care and Outreach. Dr. Chang has built a full-time faculty practice at six sites in New York and New Jersey. The 20 physicians who comprise Columbia Ophthalmology Consultants are recognized among the nation's top doctors in providing comprehensive services in all ophthalmic sub-specialties. Additionally, Dr. Chang continues to increase access to free and low-cost vision care for underserved pediatric and adult patients in Washington Heights and Harlem.

Research. Dr. Chang has formed an exceptional research team—the brightest and most promising in the field—whose innovations in understanding retinal diseases and glaucoma have resulted in a doubling of NIH funding, new clinical trials and increased private support. The donors who have funded major renovations of vital research and laboratory facilities know that their gifts are truly making a difference in the Department's ground-breaking research.

Academic Mission. Dr. Chang's commitment to providing the best training for the next generation of ophthalmologists and scientists is evidenced by the world-class quality of the faculty and the increased number of outstanding applications for the Department's highly competitive residency program.

Vision for the Future. Together with an expanded Board of Advisors and talented staff, Dr. Chang has doubled the
Brown Glaucoma Lab Opens

"We finally have a home base for glaucoma research," declares Chyuan-Sheng "Victor" Lin, Ph.D., referring to the recently dedicated Bernard and Shirlee Brown Glaucoma Research Laboratory at the Harkness Eye Institute. "One of the most exciting features of the new lab is that it accommodates both clinicians and basic research scientists with diverse training backgrounds."

Dr. Lin, a molecular neurobiologist and director of the Herbert Irving Comprehensive Cancer Center Embryonic Stem Cell and Transgenesis Core at Columbia, is the Homer McK. Rees Scholar and one of the laboratory’s three principal investigators. He is joined by geneticist Stephen H. Tsang, M.D., Ph.D., Assistant Professor of Ophthalmology and the Joel Hoffman Scholar. The third principal investigator is James C. Tsai, M.D., Director of the Glaucoma Division and Department's endowment, funded major capital renovations, established seven new endowed professorships and launched the "Vision for the Future" campaign.

In all his endeavors, Dr. Chang remains, first and foremost, a deeply dedicated doctor who treats his patients with the utmost attention and concern. A master vitreoretinal surgeon, his discoveries have revolutionized retinal surgery worldwide, for ophthalmologists and patients alike.

Please join me in saluting Dr. Chang's impressive first decade at Columbia. In this next decade we will make our "Vision for the Future" a reality. Thank you, Dr. Chang, for your inspired leadership.

Louis V. Gerstner, Jr.
Chairman, Board of Advisors
Sparrow Named New Anthony Donn Professor (con’t. from page 1)

A year later, Mrs. Blanchette Hooker Rockefeller made the cornerstone gift that launched the effort to name an endowed chair in Dr. Donn's honor. With many generous gifts from grateful patients and caring colleagues, and a capstone gift from Mrs. Dorothy Dillon Eweson of the Clarence and Anne Dillon Dunwalke Trust, the funding of the Anthony Donn Professorship of Ophthalmology is complete. This is the ninth such endowed professorship in the Department.

Janet R. Sparrow, Ph.D., Professor of Ophthalmic Science in Ophthalmology and Pathology & Cell Biology, as well as Director of the Retinal Cell Biology Laboratory, was named the inaugural Anthony Donn Professor this past summer.

"At the end of his tenure as Chairman, Dr. Donn had been associated with Columbia for nearly a half century," notes Dr. Stanley Chang. "First as a medical student, and then later as a leading academic ophthalmologist, scientist and gifted surgeon, Dr. Donn has had a profound effect on the history of the Harkness Eye Institute."

Dr. Chang continues, "With this new professorship, we honor Dr. Donn's commitment to basic science research, and simultaneously recognize Dr. Janet Sparrow's achievements and leadership in vision research."

Dr. Sparrow, the first woman to attain tenure in the Department, is world-recognized for her research to clarify the cellular processes leading to age-related macular degeneration (AMD) and Stargardt's disease (a juvenile form of macular degeneration). One of her primary areas of research involves understanding the role of photoreactive lipofuscin pigments, a byproduct of the light absorbing function of the retina, in macular degeneration. Lipofuscin accumulates in the retinal pigment epithelium (RPE) with age and is particularly abundant in Stargardt's disease. The RPE is a layer of cells that performs many functions for the light absorbing photoreceptor cells and is essential to their healthy functioning and survival. The objective of her work is to create new therapeutic interventions for macular degeneration.

Dr. Sparrow is also involved in a collaboration to study new substances that could be used to replace the eye's vitreous fluid (the fluid inside the eye) during retinal surgery and during the weeks afterward as the retina heals.
"Adjustment. It's one big adjustment."

That is how Herman Fagen, a patient of Dr. Stanley Chang's with age-related macular degeneration (AMD), describes coping with vision loss. After sixty years as an attorney, Mr. Fagen was accustomed to reading and writing vast amounts of material. Now, he sees "as if through a cloud," and must depend on others to help him with everyday tasks. "It really hurts, having to depend on others to such an extent," he acknowledges.

To address the full spectrum of needs presented by Mr. Fagen and others with similar challenges, the Department of Ophthalmology and The Jewish Guild for the Blind have initiated a ground-breaking collaboration to establish a center for low vision rehabilitation at Columbia designed to seamlessly integrate vision rehabilitation into clinical care.

"Too often, patients who have completed their course of medical or surgical treatment are told nothing more can be done," explains Alan Morse, J.D., Ph.D., Executive Director of The Guild, emphasizing the significance of the alliance. "While that may be true about the medical aspect, it is not true with regard to the full impact of vision loss on a person's life."

John T. Flynn, M.D., Vice Chairman of the Department of Ophthalmology and Chief of Pediatric Ophthalmology, experienced The Guild's success years ago while working at the Bascom Palmer Eye Institute in Miami. The heartbreak of witnessing elderly nursing home patients with vision loss "just sitting in wheelchairs all day long, doing nothing" inspired him to reach out to The Guild to establish a successful low vision clinic at Bascom Palmer Eye Institute of the Palm Beaches that provided patients with numerous rehabilitation services and taught them to make the most of their remaining vision.

At Columbia, Dr. Stanley Chang and his colleagues intend to take that collaboration model to the next level with a synergistic and multidisciplinary approach to low vision services that incorporates Columbia's academic and research resources with The Guild's highly effective service delivery model. Research will focus on AMD, Alzheimer's disease and its visual correlates, diabetic retinopathy and childhood vision disorders resulting in blindness. Long-term plans include epidemiological studies and random clinical trials, and development of new methods and devices to improve quality of life for people with vision impairment.

One of the most original aspects of the partnership is a new clinical rotation in low vision rehabilitation—believed to be the first of its kind in the country—that will be incorporated into resident and fellowship training. "This rotation will provide residents with a better understanding of how to integrate..."
Allikmets’ Lab Discovers AMD Gene (con’t. from page 1)

Director of Research at the Harkness Eye Institute and senior author of the paper published in the Proceedings of the National Academy of Sciences this past May. "The first is that it has changed our view of chronic disease, as we now realize that AMD can be triggered by infection. The second is that now we can better pinpoint the cause of AMD and develop new techniques for early intervention."

Dr. Allikmets began his career focusing on a different disease—cancer. As an investigator for the National Cancer Institute, in 1997 Allikmets discovered the ABCR gene (also known as ABCA4)—the first gene involved in a substantial, but small fraction of age-related macular degeneration. This discovery set him on the path of pursuing research in the area of AMD genetics, and he joined Columbia University Medical Center in 1999 to pursue this ground-breaking research.

Dr. Allikmets led the study's genetic analysis with colleagues from the Harkness Eye Institute, including R. Theodore Smith, M.D., Ph.D., Gaetano Barile, M.D., Stanley Chang, M.D., John Merriam, M.D. and Lawrence Yannuzzi, M.D. His co-discoverer, Gregory Hageman, Ph.D., of the University of Iowa, conducted the biological research. According to Dr. Allikmets, Dr. Hageman and their international research team, transposition of just a few out of three billion letters of the genetic code can dramatically alter the innate ability of the Factor H gene to shut down immune response, possibly after exposure to an outside stimulus such as an infection or a standard preventive vaccine.

The new findings link variations on the Factor H gene—which was found to be accumulated in drusen—directly to the process leading to AMD. The study found that patients with AMD (compared to control subjects) were more likely to have single nucleotide polymorphisms that weaken the ability of Factor H to inhibit the immune response—known as the alternative complement cascade—thus making them more susceptible to chronic inflammation and the disease. While it would seem that anti-inflammatory drugs could mitigate the inflammatory onslaught, the researchers say most do not work on this aspect of the complement system.

"The variation in Factor H, loosening control of the complement system and, therefore, strengthening the immune response, is good for keeping acute infections under control,
Imagine learning that your new baby has been permanently blinded by a disease that is entirely treatable if caught early enough. Retinopathy of Prematurity (ROP)—the abnormal overgrowth of blood vessels in the retinas of low birth weight, prematurely born infants—is a leading cause of childhood blindness worldwide, but can be treated with excellent results when diagnosed within the first several months after birth. Doctors in the Department of Ophthalmology are determined to eradicate ROP through the use of telemedicine (the application of information technology to medical diagnosis) to create a remote ROP screening network.

Approximately 3.9 million infants are born in the United States each year, and nearly half a million are born prematurely (prior to 31 weeks gestation). According to the National Eye Institute, approximately 28,000 of these pre-term infants weigh 2.75 pounds or less. The smaller the baby, the greater the risk of ROP, and about 14,000-16,000 of low birth weight infants are born with some degree of the disease. For most of these infants, ROP will improve on its own without treatment or permanent damage. However, some 1,100-1,500 infants annually develop a more severe form of ROP that requires medical treatment. Sadly, about 400-600 of these infants will become legally blind from ROP, usually due to lack of diagnosis and treatment within the optimal treatment window of time.

"We already have the ability to screen, examine, diagnose and treat the affected infants," says Dr. John T. Flynn, Chief of Pediatric Ophthalmology. "Advances in neonatal care ensure that more babies survive, but these advances also mean that ROP cases are on the rise." Until now, significant geographic and economic barriers have precluded examination of the entire at-risk population, and traditional diagnostic methods can be too invasive for such fragile babies. "Thanks to advances in telemedicine and bioinformatics," he continues, "accessible universal screening is within our grasp."

Standardized classification systems for describing eye examination findings in infants with ROP are necessary to create a remote screening network for this disease. In the 1960s, Dr. Flynn was instrumental in...
Faculty News

Stanley Chang, M.D., Chairman of the Department of Ophthalmology, was presented with the prestigious Jackson Memorial Lecture Award at the American Academy of Ophthalmology's (AAO) annual meeting on October 16 in Chicago. Honored as "one of today's most prominent ophthalmologists," Dr. Chang received the award following his delivery of the Jackson Memorial Lecture, titled "Late Open Angle Glaucoma after Vitrectomy." With this honor, Dr. Chang joins a list of recipients representing the foremost clinicians in the field. He is the first ophthalmologist from a New York institution to receive this award in 40 years.

The AAO established the award in 1942 in memory of Edward Jackson, M.D., widely regarded as the most outstanding ophthalmologist of modern times. Dr. Jackson was the first president of the organization that became the American Academy of Ophthalmology, as well as the first chairman of the American Board of Ophthalmology.

Michael F. Chiang, M.D., M.A., Assistant Professor of Ophthalmology and Biomedical Informatics, received a Career Development Award from Research to Prevent Blindness. Each award provides $200,000 over four years to support research conducted by outstanding young clinical and basic scientists in departments of ophthalmology. Dr. Chiang is the fourth recipient from Columbia, joining Rando Allikmets, Ph.D., Gaetano R. Barile, M.D. and Melanie Sohocki, Ph.D.

Peter Gouras, M.D., Professor of Ophthalmology, was awarded an honorary Ph.D. in May from the University of Athens, in recognition of his contributions to vision and ophthalmology.

Corazon Algenio, R.N., a member of the perioperative nursing staff in the Eye 4 Ambulatory Surgery Unit, was among the honorees at CUMC's...
Sixth Annual Nursing Clinical Excellence Awards Ceremony in the spring. She was recognized for placing the needs of patients first and for her advocacy on their behalf. A member of the CUMC staff since 1971, she is regarded as an excellent mentor for new nurses.

New Frontiers Conference Features Teicher Lecture

The second annual "New Frontiers in Clinical Glaucoma" conference will take place at the New York Academy of Medicine on November 11-12, 2005. Organized by Dr. James Tsai and Dr. Stanley Chang, the conference boasts an international faculty who will discuss the latest theoretical concepts, pathophysiology, diagnostic principles and therapeutic options with regard to glaucoma.

This conference features the inaugural Florence Teicher Lecture, to be delivered by David L. Epstein, M.D., Chairman of the Department of Ophthalmology at Duke University. Douglas R. Anderson, M.D., of the Bascom Palmer Eye Institute at the University of Miami, will deliver the second annual Max Forbes Lecture.

Ophthalmology Department Ranked Among Nation’s Top Ten

In the July 18th issue of U. S. News and World Report, the Departments of Ophthalmology at New York-Presbyterian Hospital, the University Hospital of Columbia and Cornell, were ranked in the top ten of ophthalmology departments in the United States. This represents a jump in the rankings from #18 last year to #9 this year, the highest ranking among all eye institutions in the greater New York area.

"We are extremely proud of this recognition, and I’d like to personally commend the talented and compassionate doctors, researchers, nurses, administrators and support staff for their fine work," declares Dr. Stanley Chang. "We are also grateful to our generous benefactors, whose gifts of time, expertise and resources have enabled us to excel. I am confident that the institution we have built together will continue to lead the way in vision care for many years to come."
Sparrow Named New Anthony Donn Professor (con’t. from page 4)

"I am thrilled to have been selected for this chair," reflects Dr. Sparrow. "Dr. Donn was acutely aware of the importance of basic research to an improved understanding of blinding disorders and the development of effective treatments. I am deeply honored."

Specializing in diseases of the cornea, Dr. Donn pioneered the development of now-routine techniques, including intraocular lens implantation following cataract surgery and specular microscopy to monitor the endothelial cells lining the back of the cornea. He earned international recognition for Columbia's corneal research program, leading to major funding from the National Institutes for Health in 1964 for a Corneal Center that he co-directed with A. Gerard DeVoe, M.D., also a former ophthalmology department chair. Their research advanced understanding of corneal physiology, enhanced procedures for handling donor corneal tissue and improved contact lens design.

"Donors are excited to know that their contributions are funding the research efforts of top-notch scientists like Dr. Sparrow," notes Cynthia MacKay, M.D., a Columbia faculty member who was involved with the fundraising effort.

Dr. Donn is equally appreciative. "This is simply the nicest thing that has ever happened to me," he shares. "I had so much fun doing what I loved—being a doctor, the Director of the Cornea Center and then the department chair. I never expected this tremendous honor, but I am delighted and humbled. I offer my sincere thanks to all the wonderfully generous people who made this professorship possible."

Honor aside, Dr. Donn is most grateful that the Department of Ophthalmology's research efforts will benefit from the new professorship.

Dr. Chang agrees. "The Donn Professorship will enable the Department to remain at the forefront of research and patient care, and it is an appropriate tribute to Dr. Donn's deep and longstanding commitment to the field of ophthalmology."
Dr. Harold Spalter’s pioneering spirit regarding vision research has helped to define the field of ophthalmology as we know it today, and has inspired his nearly 40 years of volunteer involvement with Research to Prevent Blindness (RPB). RPB is the leading non-government supporter of eye research, with the mission to prevent, treat or eradicate all diseases that threaten vision.

Dr. Spalter’s participation in RPB’s intense advocacy for vision research in the 1960s paved the way for the creation of the National Eye Institute at the NIH, as well as the formation of distinct departments of ophthalmology (to replace the divisions of ophthalmology, subordinate to the departments of surgery) in many medical schools throughout the United States. Since 1966, Dr. Spalter has chaired RPB’s Scientific Advisory Panel, the group of distinguished medical science leaders (including five Nobel Prize laureates) that has directed the allocation of over $235 million to more than 60 leading scientific institutions in the United States. RPB-funded researchers have been associated with nearly every major breakthrough in the understanding and treatment of the loss of vision in the past 40 years.

Dr. Spalter arrived at Columbia 54 years ago as a medical student, interned in medicine at Presbyterian Hospital and completed his residency at the Harkness Eye Institute, after which he served as the ophthalmologist for the Third United States Air Force in England. Following this assignment, he completed a fellowship with Sir Stewart Duke Elder at the Institute of Ophthalmology in London. Upon his return to Columbia, Dr. Spalter specialized in medical and surgical retinal disease, later becoming Director of the Retina Service. He was among the first investigators to use the laser for the treatment of diabetic macular edema and central serous retinopathy.

After witnessing—and contributing to—stunning advances in vision research and care over the past five decades, Dr. Spalter remains as enthusiastic as ever. "Every day, we have a better understanding of human disease and the potential therapies we can apply. Research must remain a top priority."

We salute Dr. Spalter for his gifts of time and energy throughout his career at Columbia, and for the impact of his personal commitment to vision research on the field of ophthalmology.
establishing this universally accepted ROP classification standard, allowing doctors worldwide to have the same understanding of a particular case. With the advent of the RetCam™, a non-invasive digital imaging system for capturing wide-angle images of the retina, it is now possible to obtain an objective and precise visual record of each patient's eye. Neonatal nurses are being trained to use the RetCam™ and these digital images have the potential to replace representations of the retina that are currently being hand-drawn by ophthalmologists.

Michael F. Chiang, M.D., M.A., Assistant Professor of Ophthalmology and Biomedical Informatics, is directing a large-scale study involving CUMC and the Bascom Palmer Eye Institute at the University of Miami to test the viability of an internet-based network for remote ROP screening. Trained "readers" analyze the images and data to determine whether referral to a pediatric ophthalmologist is warranted. So far, the study has confirmed the accuracy of the remote screening process by demonstrating that several trained readers can independently view identical digital images and data and arrive at the same diagnosis. Preliminary findings from this study will be published in the November 2005 Proceedings of the American Medical Informatics Association as well as in the March 2006 Archives of Ophthalmology.

Dr. Chiang is now working to develop the network of reading centers around the country, including the Harkness Eye Institute, to which neonatal intensive care units can send data and images for analysis. The next step involves assessing the network's clinical and technical performance, and evaluating the acceptability and cost-benefit impact of telemedicine for ophthalmic care.

"A remote ROP screening network creates possibilities for bringing the diagnostic ability of a major eye institute to isolated locations, vastly extending our ability to catch the disease in time to treat it," explains Dr. Chiang. "The emotional and economic impact of vision loss at such a young age is enormous—to the child, to the family and to society. We are very excited as we witness the potential of technology to address this devastating blinding disorder. It is humbling to think that for every case of ROP we detect and treat successfully, we have changed the course of that child's life forever."
being developed to prolong the survival of retinal ganglion cells in these glaucoma models.

The new laboratory has helped Drs. Tsai, Tsang and Lin attract an impressive international research team. Louvain (Belgium) scientist Jun Lin, M.D., Ph.D. is a molecular biologist who previously studied the genetic and molecular basis for sex-linked mental retardation and central nervous system development. Richard Davis, Ph.D. studied Drosophila melanogaster (fruit fly) eye and brain development while teaching at Baylor College of Medicine in Houston. German biochemist Kerstin Janisch, Ph.D., who arrived in September, previously studied the role of oxygen toxicity in macular degeneration. The Brown Laboratory is managed by Li Wu, M.D., an internationally renowned pathologist. Two technicians and a Columbia medical student support the team's work.

The idea for what is now the Brown Glaucoma Research Laboratory began with a concept—that collaboration between clinicians and basic research scientists could accelerate the development of new glaucoma therapies through synergistic integration of scientific research with real-time clinical information and care. Dr. Stanley Chang and Dr. Tsai presented their plan at a Board of Advisors meeting in 2002, and Shirlee Brown immediately fell in love with the idea.

"We have the utmost respect for Dr. Tsai's ability as a doctor and as a scientist, and his enthusiasm is contagious," Mrs. Brown explains, noting that she and her husband have received "superb" vision care from Drs. Chang and Tsai. "This project just felt like a natural match with our personal and philanthropic interests. We are so honored to be involved with this important work."

"The completion of the Brown Laboratory is a giant leap forward for glaucoma research and treatment," remarks Dr. Tsai. "I am overwhelmed with gratitude for Bernard and Shirlee Brown's passion for this work and for their tremendous generosity."
but ironically that may contribute to a chronic disease like AMD later in life," says Michael Dean, Ph.D., Section Chief at the Laboratory of Genomic Diversity, NCI/NIH.

Left unchecked, that same strengthened immune response can lead to the chronic inflammation that characterizes AMD, as well as MPGN II, a rare kidney disease that shares genetic determinants and symptoms of AMD.

Dr. Hageman notes, "Our results suggest that individuals with AMD and MPGN II have a functional variant in Factor H protein that results in over-activation of the complement system, resulting in slowly accumulating damage to the eye, kidneys and perhaps to other organs as well."

This study is the first to examine the roots of AMD from a biological perspective and to explore the role that immune response plays in activating the disease, as the gene variation by itself does not necessarily cause AMD.

"Research shows that the genetic mutation is present in approximately half of AMD patients, and is also present in almost 30 percent of the control group," Dr. Allikmets explains. "Not everyone who has the genetic predisposition in Factor H will develop the disease, so we knew there had to be another factor to trigger the process. The results were quite amazing, and this is a huge step."

With these new biological insights, researchers can now focus on developing new prevention strategies. The molecules involved in complement activation and its regulation become prime targets for therapeutic intervention. One potential avenue for exploration is gene therapy, which has been successful in treating other conditions.

"We may be able to deliver healthy Factor H directly into the eye, thus short-circuiting the disease process," says Dr. Allikmets, "but this approach has yet to be tested."

Additional theoretical treatment possibilities, although more invasive, could include extracting stem cells from the patient's eye for re-engineering and re-implantation, or partial transplantation of the liver, the main source of Factor H.

"This new finding is momentous—both in understanding the causes of AMD, and in providing a clear direction for developing potential new therapies," says Dr. Stanley Chang. "Our capacity to address and ultimately prevent vision loss is directly related to the resources available for basic research. We are so fortunate to have visionary donors who help make this work possible."

Special thanks to Dr. Allikmets and Craig LeMoult of CUMC External Relations for their contributions to this article.
In Memoriam:
Dorothy Dillon Eweson
1913-2005

With sadness, the Department of Ophthalmology mourns the loss of Dorothy D. Eweson on June 8, 2005 at the age of 92. A revered member of the Board of Advisors since its inception in 1990 and a longtime patient, Mrs. Eweson was a loyal participant who never missed a meeting until her recent illness. She was the daughter of the late Anne Dillon Dunwalke and Clarence Dillon, and was predeceased by her husbands, Philip Elsworth Allen, Sidney Spivack and Eric Eweson. She is survived by three children and numerous grandchildren.

In the 1950s, Mrs. Eweson studied for a Ph.D. at Columbia University to pursue interests in mathematics and astronomy. Later, she served as a director of The Bedminster Foundation and the Clarence and Anne Dillon Dunwalke Trust. A prominent figure in New Jersey cultural affairs, she lived for a time at Dunwalke, her father’s estate, which was bequeathed to Princeton University upon his death in 1979 for seminars and cultural events.

Mrs. Eweson was a gracious and generous lady, always interested and supportive of the Department’s activities. She will be greatly missed.

Low Vision: Easing the Way (con’t. from page 5)

occupational therapy, physical therapy and other services into each patient’s rehabilitation plan in a compassionate and respectful way," comments Richard Braunstein, M.D., Miranda Wong Tang Associate Professor of Clinical Ophthalmology and Educational Program Director. "Additionally, intensive training will support practicing ophthalmologists who wish to specialize in low vision care and rehabilitation to better serve patients with these challenges."

Mr. Fagen has a deep appreciation for the value of this collaboration. "Losing vision is a devastating blow to one’s sense of independence. This effort will ease the transition in learning new ways to do familiar things."

"We are undertaking this collaboration with great enthusiasm," remarks Dr. Stanley Chang. "This is both a challenge and an opportunity to train our residents and fellows to look beyond first-line surgical and medical interventions toward incorporating comprehensive low vision rehabilitation services into patients' treatment plans. Helping patients move from 'coping' with low vision and vision loss to 'thriving' in spite of their disability requires knowledge, training, compassion and the utmost respect for the human ability to persevere in the face of adversity."
Creating a Gift that Makes a Difference

With the right planning, your gift can help us recruit esteemed faculty, perform cutting-edge research, build new laboratories or acquire equipment.

First, we listen closely to understand your philanthropic interests and wishes. Then, based on that information, we design and refine a giving opportunity until it is exactly right for you. With thoughtful planning and the proper tax advice, you can make a meaningful gift and meet your personal financial objectives.

Your gift today will have an important impact on vision research and treatment for years to come. For more information, please contact Jane Heffner at (212) 305-7827.

Depending on your circumstances and desires, you may:

- Claim a money-saving income tax deduction;
- Avoid capital gains on gifts of long-term appreciated securities and property; and/or
- Receive income from your gift for the rest of your life.